1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
|
\begin{code}
{-# OPTIONS_GHC -fno-implicit-prelude -fno-bang-patterns #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.Arr
-- Copyright : (c) The University of Glasgow, 1994-2000
-- License : see libraries/base/LICENSE
--
-- Maintainer : cvs-ghc@haskell.org
-- Stability : internal
-- Portability : non-portable (GHC extensions)
--
-- GHC\'s array implementation.
--
-----------------------------------------------------------------------------
-- #hide
module GHC.Arr where
import {-# SOURCE #-} GHC.Err ( error )
import GHC.Enum
import GHC.Num
import GHC.ST
import GHC.Base
import GHC.List
import GHC.Show
infixl 9 !, //
default ()
\end{code}
%*********************************************************
%* *
\subsection{The @Ix@ class}
%* *
%*********************************************************
\begin{code}
-- | The 'Ix' class is used to map a contiguous subrange of values in
-- a type onto integers. It is used primarily for array indexing
-- (see "Data.Array", "Data.Array.IArray" and "Data.Array.MArray").
--
-- The first argument @(l,u)@ of each of these operations is a pair
-- specifying the lower and upper bounds of a contiguous subrange of values.
--
-- An implementation is entitled to assume the following laws about these
-- operations:
--
-- * @'inRange' (l,u) i == 'elem' i ('range' (l,u))@
--
-- * @'range' (l,u) '!!' 'index' (l,u) i == i@, when @'inRange' (l,u) i@
--
-- * @'map' ('index' (l,u)) ('range' (l,u))) == [0..'rangeSize' (l,u)-1]@
--
-- * @'rangeSize' (l,u) == 'length' ('range' (l,u))@
--
-- Minimal complete instance: 'range', 'index' and 'inRange'.
--
class (Ord a) => Ix a where
-- | The list of values in the subrange defined by a bounding pair.
range :: (a,a) -> [a]
-- | The position of a subscript in the subrange.
index :: (a,a) -> a -> Int
-- | Like 'index', but without checking that the value is in range.
unsafeIndex :: (a,a) -> a -> Int
-- | Returns 'True' the given subscript lies in the range defined
-- the bounding pair.
inRange :: (a,a) -> a -> Bool
-- | The size of the subrange defined by a bounding pair.
rangeSize :: (a,a) -> Int
-- | like 'rangeSize', but without checking that the upper bound is
-- in range.
unsafeRangeSize :: (a,a) -> Int
-- Must specify one of index, unsafeIndex
index b i | inRange b i = unsafeIndex b i
| otherwise = error "Error in array index"
unsafeIndex b i = index b i
rangeSize b@(_l,h) | inRange b h = unsafeIndex b h + 1
| otherwise = 0 -- This case is only here to
-- check for an empty range
-- NB: replacing (inRange b h) by (l <= h) fails for
-- tuples. E.g. (1,2) <= (2,1) but the range is empty
unsafeRangeSize b@(_l,h) = unsafeIndex b h + 1
\end{code}
Note that the following is NOT right
rangeSize (l,h) | l <= h = index b h + 1
| otherwise = 0
Because it might be the case that l<h, but the range
is nevertheless empty. Consider
((1,2),(2,1))
Here l<h, but the second index ranges from 2..1 and
hence is empty
%*********************************************************
%* *
\subsection{Instances of @Ix@}
%* *
%*********************************************************
\begin{code}
-- abstract these errors from the relevant index functions so that
-- the guts of the function will be small enough to inline.
{-# NOINLINE indexError #-}
indexError :: Show a => (a,a) -> a -> String -> b
indexError rng i tp
= error (showString "Ix{" . showString tp . showString "}.index: Index " .
showParen True (showsPrec 0 i) .
showString " out of range " $
showParen True (showsPrec 0 rng) "")
----------------------------------------------------------------------
instance Ix Char where
{-# INLINE range #-}
range (m,n) = [m..n]
{-# INLINE unsafeIndex #-}
unsafeIndex (m,_n) i = fromEnum i - fromEnum m
index b i | inRange b i = unsafeIndex b i
| otherwise = indexError b i "Char"
inRange (m,n) i = m <= i && i <= n
----------------------------------------------------------------------
instance Ix Int where
{-# INLINE range #-}
-- The INLINE stops the build in the RHS from getting inlined,
-- so that callers can fuse with the result of range
range (m,n) = [m..n]
{-# INLINE unsafeIndex #-}
unsafeIndex (m,_n) i = i - m
index b i | inRange b i = unsafeIndex b i
| otherwise = indexError b i "Int"
{-# INLINE inRange #-}
inRange (I# m,I# n) (I# i) = m <=# i && i <=# n
----------------------------------------------------------------------
instance Ix Integer where
{-# INLINE range #-}
range (m,n) = [m..n]
{-# INLINE unsafeIndex #-}
unsafeIndex (m,_n) i = fromInteger (i - m)
index b i | inRange b i = unsafeIndex b i
| otherwise = indexError b i "Integer"
inRange (m,n) i = m <= i && i <= n
----------------------------------------------------------------------
instance Ix Bool where -- as derived
{-# INLINE range #-}
range (m,n) = [m..n]
{-# INLINE unsafeIndex #-}
unsafeIndex (l,_) i = fromEnum i - fromEnum l
index b i | inRange b i = unsafeIndex b i
| otherwise = indexError b i "Bool"
inRange (l,u) i = fromEnum i >= fromEnum l && fromEnum i <= fromEnum u
----------------------------------------------------------------------
instance Ix Ordering where -- as derived
{-# INLINE range #-}
range (m,n) = [m..n]
{-# INLINE unsafeIndex #-}
unsafeIndex (l,_) i = fromEnum i - fromEnum l
index b i | inRange b i = unsafeIndex b i
| otherwise = indexError b i "Ordering"
inRange (l,u) i = fromEnum i >= fromEnum l && fromEnum i <= fromEnum u
----------------------------------------------------------------------
instance Ix () where
{-# INLINE range #-}
range ((), ()) = [()]
{-# INLINE unsafeIndex #-}
unsafeIndex ((), ()) () = 0
{-# INLINE inRange #-}
inRange ((), ()) () = True
{-# INLINE index #-}
index b i = unsafeIndex b i
----------------------------------------------------------------------
instance (Ix a, Ix b) => Ix (a, b) where -- as derived
{-# SPECIALISE instance Ix (Int,Int) #-}
{- INLINE range #-}
range ((l1,l2),(u1,u2)) =
[ (i1,i2) | i1 <- range (l1,u1), i2 <- range (l2,u2) ]
{- INLINE unsafeIndex #-}
unsafeIndex ((l1,l2),(u1,u2)) (i1,i2) =
unsafeIndex (l1,u1) i1 * unsafeRangeSize (l2,u2) + unsafeIndex (l2,u2) i2
{- INLINE inRange #-}
inRange ((l1,l2),(u1,u2)) (i1,i2) =
inRange (l1,u1) i1 && inRange (l2,u2) i2
-- Default method for index
----------------------------------------------------------------------
instance (Ix a1, Ix a2, Ix a3) => Ix (a1,a2,a3) where
{-# SPECIALISE instance Ix (Int,Int,Int) #-}
range ((l1,l2,l3),(u1,u2,u3)) =
[(i1,i2,i3) | i1 <- range (l1,u1),
i2 <- range (l2,u2),
i3 <- range (l3,u3)]
unsafeIndex ((l1,l2,l3),(u1,u2,u3)) (i1,i2,i3) =
unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * (
unsafeIndex (l1,u1) i1))
inRange ((l1,l2,l3),(u1,u2,u3)) (i1,i2,i3) =
inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
inRange (l3,u3) i3
-- Default method for index
----------------------------------------------------------------------
instance (Ix a1, Ix a2, Ix a3, Ix a4) => Ix (a1,a2,a3,a4) where
range ((l1,l2,l3,l4),(u1,u2,u3,u4)) =
[(i1,i2,i3,i4) | i1 <- range (l1,u1),
i2 <- range (l2,u2),
i3 <- range (l3,u3),
i4 <- range (l4,u4)]
unsafeIndex ((l1,l2,l3,l4),(u1,u2,u3,u4)) (i1,i2,i3,i4) =
unsafeIndex (l4,u4) i4 + unsafeRangeSize (l4,u4) * (
unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * (
unsafeIndex (l1,u1) i1)))
inRange ((l1,l2,l3,l4),(u1,u2,u3,u4)) (i1,i2,i3,i4) =
inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
inRange (l3,u3) i3 && inRange (l4,u4) i4
-- Default method for index
instance (Ix a1, Ix a2, Ix a3, Ix a4, Ix a5) => Ix (a1,a2,a3,a4,a5) where
range ((l1,l2,l3,l4,l5),(u1,u2,u3,u4,u5)) =
[(i1,i2,i3,i4,i5) | i1 <- range (l1,u1),
i2 <- range (l2,u2),
i3 <- range (l3,u3),
i4 <- range (l4,u4),
i5 <- range (l5,u5)]
unsafeIndex ((l1,l2,l3,l4,l5),(u1,u2,u3,u4,u5)) (i1,i2,i3,i4,i5) =
unsafeIndex (l5,u5) i5 + unsafeRangeSize (l5,u5) * (
unsafeIndex (l4,u4) i4 + unsafeRangeSize (l4,u4) * (
unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * (
unsafeIndex (l1,u1) i1))))
inRange ((l1,l2,l3,l4,l5),(u1,u2,u3,u4,u5)) (i1,i2,i3,i4,i5) =
inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
inRange (l3,u3) i3 && inRange (l4,u4) i4 &&
inRange (l5,u5) i5
-- Default method for index
\end{code}
%*********************************************************
%* *
\subsection{The @Array@ types}
%* *
%*********************************************************
\begin{code}
type IPr = (Int, Int)
-- | The type of immutable non-strict (boxed) arrays
-- with indices in @i@ and elements in @e@.
data Ix i => Array i e = Array !i !i (Array# e)
-- | Mutable, boxed, non-strict arrays in the 'ST' monad. The type
-- arguments are as follows:
--
-- * @s@: the state variable argument for the 'ST' type
--
-- * @i@: the index type of the array (should be an instance of 'Ix')
--
-- * @e@: the element type of the array.
--
data STArray s i e = STArray !i !i (MutableArray# s e)
-- No Ix context for STArray. They are stupid,
-- and force an Ix context on the equality instance.
-- Just pointer equality on mutable arrays:
instance Eq (STArray s i e) where
STArray _ _ arr1# == STArray _ _ arr2# =
sameMutableArray# arr1# arr2#
\end{code}
%*********************************************************
%* *
\subsection{Operations on immutable arrays}
%* *
%*********************************************************
\begin{code}
{-# NOINLINE arrEleBottom #-}
arrEleBottom :: a
arrEleBottom = error "(Array.!): undefined array element"
-- | Construct an array with the specified bounds and containing values
-- for given indices within these bounds.
--
-- The array is undefined (i.e. bottom) if any index in the list is
-- out of bounds. The Haskell 98 Report further specifies that if any
-- two associations in the list have the same index, the value at that
-- index is undefined (i.e. bottom). However in GHC's implementation,
-- the value at such an index is the value part of the last association
-- with that index in the list.
--
-- Because the indices must be checked for these errors, 'array' is
-- strict in the bounds argument and in the indices of the association
-- list, but nonstrict in the values. Thus, recurrences such as the
-- following are possible:
--
-- > a = array (1,100) ((1,1) : [(i, i * a!(i-1)) | i <- [2..100]])
--
-- Not every index within the bounds of the array need appear in the
-- association list, but the values associated with indices that do not
-- appear will be undefined (i.e. bottom).
--
-- If, in any dimension, the lower bound is greater than the upper bound,
-- then the array is legal, but empty. Indexing an empty array always
-- gives an array-bounds error, but 'bounds' still yields the bounds
-- with which the array was constructed.
{-# INLINE array #-}
array :: Ix i
=> (i,i) -- ^ a pair of /bounds/, each of the index type
-- of the array. These bounds are the lowest and
-- highest indices in the array, in that order.
-- For example, a one-origin vector of length
-- '10' has bounds '(1,10)', and a one-origin '10'
-- by '10' matrix has bounds '((1,1),(10,10))'.
-> [(i, e)] -- ^ a list of /associations/ of the form
-- (/index/, /value/). Typically, this list will
-- be expressed as a comprehension. An
-- association '(i, x)' defines the value of
-- the array at index 'i' to be 'x'.
-> Array i e
array (l,u) ies = unsafeArray (l,u) [(index (l,u) i, e) | (i, e) <- ies]
{-# INLINE unsafeArray #-}
unsafeArray :: Ix i => (i,i) -> [(Int, e)] -> Array i e
unsafeArray (l,u) ies = runST (ST $ \s1# ->
case rangeSize (l,u) of { I# n# ->
case newArray# n# arrEleBottom s1# of { (# s2#, marr# #) ->
foldr (fill marr#) (done l u marr#) ies s2# }})
{-# INLINE fill #-}
fill :: MutableArray# s e -> (Int, e) -> STRep s a -> STRep s a
fill marr# (I# i#, e) next s1# =
case writeArray# marr# i# e s1# of { s2# ->
next s2# }
{-# INLINE done #-}
done :: Ix i => i -> i -> MutableArray# s e -> STRep s (Array i e)
done l u marr# s1# =
case unsafeFreezeArray# marr# s1# of { (# s2#, arr# #) ->
(# s2#, Array l u arr# #) }
-- This is inefficient and I'm not sure why:
-- listArray (l,u) es = unsafeArray (l,u) (zip [0 .. rangeSize (l,u) - 1] es)
-- The code below is better. It still doesn't enable foldr/build
-- transformation on the list of elements; I guess it's impossible
-- using mechanisms currently available.
-- | Construct an array from a pair of bounds and a list of values in
-- index order.
{-# INLINE listArray #-}
listArray :: Ix i => (i,i) -> [e] -> Array i e
listArray (l,u) es = runST (ST $ \s1# ->
case rangeSize (l,u) of { I# n# ->
case newArray# n# arrEleBottom s1# of { (# s2#, marr# #) ->
let fillFromList i# xs s3# | i# ==# n# = s3#
| otherwise = case xs of
[] -> s3#
y:ys -> case writeArray# marr# i# y s3# of { s4# ->
fillFromList (i# +# 1#) ys s4# } in
case fillFromList 0# es s2# of { s3# ->
done l u marr# s3# }}})
-- | The value at the given index in an array.
{-# INLINE (!) #-}
(!) :: Ix i => Array i e -> i -> e
arr@(Array l u _) ! i = unsafeAt arr (index (l,u) i)
{-# INLINE unsafeAt #-}
unsafeAt :: Ix i => Array i e -> Int -> e
unsafeAt (Array _ _ arr#) (I# i#) =
case indexArray# arr# i# of (# e #) -> e
-- | The bounds with which an array was constructed.
{-# INLINE bounds #-}
bounds :: Ix i => Array i e -> (i,i)
bounds (Array l u _) = (l,u)
-- | The list of indices of an array in ascending order.
{-# INLINE indices #-}
indices :: Ix i => Array i e -> [i]
indices (Array l u _) = range (l,u)
-- | The list of elements of an array in index order.
{-# INLINE elems #-}
elems :: Ix i => Array i e -> [e]
elems arr@(Array l u _) =
[unsafeAt arr i | i <- [0 .. rangeSize (l,u) - 1]]
-- | The list of associations of an array in index order.
{-# INLINE assocs #-}
assocs :: Ix i => Array i e -> [(i, e)]
assocs arr@(Array l u _) =
[(i, unsafeAt arr (unsafeIndex (l,u) i)) | i <- range (l,u)]
-- | The 'accumArray' deals with repeated indices in the association
-- list using an /accumulating function/ which combines the values of
-- associations with the same index.
-- For example, given a list of values of some index type, @hist@
-- produces a histogram of the number of occurrences of each index within
-- a specified range:
--
-- > hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
-- > hist bnds is = accumArray (+) 0 bnds [(i, 1) | i<-is, inRange bnds i]
--
-- If the accumulating function is strict, then 'accumArray' is strict in
-- the values, as well as the indices, in the association list. Thus,
-- unlike ordinary arrays built with 'array', accumulated arrays should
-- not in general be recursive.
{-# INLINE accumArray #-}
accumArray :: Ix i
=> (e -> a -> e) -- ^ accumulating function
-> e -- ^ initial value
-> (i,i) -- ^ bounds of the array
-> [(i, a)] -- ^ association list
-> Array i e
accumArray f init (l,u) ies =
unsafeAccumArray f init (l,u) [(index (l,u) i, e) | (i, e) <- ies]
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray :: Ix i => (e -> a -> e) -> e -> (i,i) -> [(Int, a)] -> Array i e
unsafeAccumArray f init (l,u) ies = runST (ST $ \s1# ->
case rangeSize (l,u) of { I# n# ->
case newArray# n# init s1# of { (# s2#, marr# #) ->
foldr (adjust f marr#) (done l u marr#) ies s2# }})
{-# INLINE adjust #-}
adjust :: (e -> a -> e) -> MutableArray# s e -> (Int, a) -> STRep s b -> STRep s b
adjust f marr# (I# i#, new) next s1# =
case readArray# marr# i# s1# of { (# s2#, old #) ->
case writeArray# marr# i# (f old new) s2# of { s3# ->
next s3# }}
-- | Constructs an array identical to the first argument except that it has
-- been updated by the associations in the right argument.
-- For example, if @m@ is a 1-origin, @n@ by @n@ matrix, then
--
-- > m//[((i,i), 0) | i <- [1..n]]
--
-- is the same matrix, except with the diagonal zeroed.
--
-- Repeated indices in the association list are handled as for 'array':
-- Haskell 98 specifies that the resulting array is undefined (i.e. bottom),
-- but GHC's implementation uses the last association for each index.
{-# INLINE (//) #-}
(//) :: Ix i => Array i e -> [(i, e)] -> Array i e
arr@(Array l u _) // ies =
unsafeReplace arr [(index (l,u) i, e) | (i, e) <- ies]
{-# INLINE unsafeReplace #-}
unsafeReplace :: Ix i => Array i e -> [(Int, e)] -> Array i e
unsafeReplace arr@(Array l u _) ies = runST (do
STArray _ _ marr# <- thawSTArray arr
ST (foldr (fill marr#) (done l u marr#) ies))
-- | @'accum' f@ takes an array and an association list and accumulates
-- pairs from the list into the array with the accumulating function @f@.
-- Thus 'accumArray' can be defined using 'accum':
--
-- > accumArray f z b = accum f (array b [(i, z) | i <- range b])
--
{-# INLINE accum #-}
accum :: Ix i => (e -> a -> e) -> Array i e -> [(i, a)] -> Array i e
accum f arr@(Array l u _) ies =
unsafeAccum f arr [(index (l,u) i, e) | (i, e) <- ies]
{-# INLINE unsafeAccum #-}
unsafeAccum :: Ix i => (e -> a -> e) -> Array i e -> [(Int, a)] -> Array i e
unsafeAccum f arr@(Array l u _) ies = runST (do
STArray _ _ marr# <- thawSTArray arr
ST (foldr (adjust f marr#) (done l u marr#) ies))
{-# INLINE amap #-}
amap :: Ix i => (a -> b) -> Array i a -> Array i b
amap f arr@(Array l u _) =
unsafeArray (l,u) [(i, f (unsafeAt arr i)) | i <- [0 .. rangeSize (l,u) - 1]]
-- | 'ixmap' allows for transformations on array indices.
-- It may be thought of as providing function composition on the right
-- with the mapping that the original array embodies.
--
-- A similar transformation of array values may be achieved using 'fmap'
-- from the 'Array' instance of the 'Functor' class.
{-# INLINE ixmap #-}
ixmap :: (Ix i, Ix j) => (i,i) -> (i -> j) -> Array j e -> Array i e
ixmap (l,u) f arr =
unsafeArray (l,u) [(unsafeIndex (l,u) i, arr ! f i) | i <- range (l,u)]
{-# INLINE eqArray #-}
eqArray :: (Ix i, Eq e) => Array i e -> Array i e -> Bool
eqArray arr1@(Array l1 u1 _) arr2@(Array l2 u2 _) =
if rangeSize (l1,u1) == 0 then rangeSize (l2,u2) == 0 else
l1 == l2 && u1 == u2 &&
and [unsafeAt arr1 i == unsafeAt arr2 i | i <- [0 .. rangeSize (l1,u1) - 1]]
{-# INLINE cmpArray #-}
cmpArray :: (Ix i, Ord e) => Array i e -> Array i e -> Ordering
cmpArray arr1 arr2 = compare (assocs arr1) (assocs arr2)
{-# INLINE cmpIntArray #-}
cmpIntArray :: Ord e => Array Int e -> Array Int e -> Ordering
cmpIntArray arr1@(Array l1 u1 _) arr2@(Array l2 u2 _) =
if rangeSize (l1,u1) == 0 then if rangeSize (l2,u2) == 0 then EQ else LT else
if rangeSize (l2,u2) == 0 then GT else
case compare l1 l2 of
EQ -> foldr cmp (compare u1 u2) [0 .. rangeSize (l1, min u1 u2) - 1]
other -> other
where
cmp i rest = case compare (unsafeAt arr1 i) (unsafeAt arr2 i) of
EQ -> rest
other -> other
{-# RULES "cmpArray/Int" cmpArray = cmpIntArray #-}
\end{code}
%*********************************************************
%* *
\subsection{Array instances}
%* *
%*********************************************************
\begin{code}
instance Ix i => Functor (Array i) where
fmap = amap
instance (Ix i, Eq e) => Eq (Array i e) where
(==) = eqArray
instance (Ix i, Ord e) => Ord (Array i e) where
compare = cmpArray
instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec p a =
showParen (p > appPrec) $
showString "array " .
showsPrec appPrec1 (bounds a) .
showChar ' ' .
showsPrec appPrec1 (assocs a)
-- Precedence of 'array' is the precedence of application
-- The Read instance is in GHC.Read
\end{code}
%*********************************************************
%* *
\subsection{Operations on mutable arrays}
%* *
%*********************************************************
Idle ADR question: What's the tradeoff here between flattening these
datatypes into @STArray ix ix (MutableArray# s elt)@ and using
it as is? As I see it, the former uses slightly less heap and
provides faster access to the individual parts of the bounds while the
code used has the benefit of providing a ready-made @(lo, hi)@ pair as
required by many array-related functions. Which wins? Is the
difference significant (probably not).
Idle AJG answer: When I looked at the outputted code (though it was 2
years ago) it seems like you often needed the tuple, and we build
it frequently. Now we've got the overloading specialiser things
might be different, though.
\begin{code}
{-# INLINE newSTArray #-}
newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
newSTArray (l,u) init = ST $ \s1# ->
case rangeSize (l,u) of { I# n# ->
case newArray# n# init s1# of { (# s2#, marr# #) ->
(# s2#, STArray l u marr# #) }}
{-# INLINE boundsSTArray #-}
boundsSTArray :: STArray s i e -> (i,i)
boundsSTArray (STArray l u _) = (l,u)
{-# INLINE readSTArray #-}
readSTArray :: Ix i => STArray s i e -> i -> ST s e
readSTArray marr@(STArray l u _) i =
unsafeReadSTArray marr (index (l,u) i)
{-# INLINE unsafeReadSTArray #-}
unsafeReadSTArray :: Ix i => STArray s i e -> Int -> ST s e
unsafeReadSTArray (STArray _ _ marr#) (I# i#) = ST $ \s1# ->
readArray# marr# i# s1#
{-# INLINE writeSTArray #-}
writeSTArray :: Ix i => STArray s i e -> i -> e -> ST s ()
writeSTArray marr@(STArray l u _) i e =
unsafeWriteSTArray marr (index (l,u) i) e
{-# INLINE unsafeWriteSTArray #-}
unsafeWriteSTArray :: Ix i => STArray s i e -> Int -> e -> ST s ()
unsafeWriteSTArray (STArray _ _ marr#) (I# i#) e = ST $ \s1# ->
case writeArray# marr# i# e s1# of { s2# ->
(# s2#, () #) }
\end{code}
%*********************************************************
%* *
\subsection{Moving between mutable and immutable}
%* *
%*********************************************************
\begin{code}
freezeSTArray :: Ix i => STArray s i e -> ST s (Array i e)
freezeSTArray (STArray l u marr#) = ST $ \s1# ->
case rangeSize (l,u) of { I# n# ->
case newArray# n# arrEleBottom s1# of { (# s2#, marr'# #) ->
let copy i# s3# | i# ==# n# = s3#
| otherwise =
case readArray# marr# i# s3# of { (# s4#, e #) ->
case writeArray# marr'# i# e s4# of { s5# ->
copy (i# +# 1#) s5# }} in
case copy 0# s2# of { s3# ->
case unsafeFreezeArray# marr'# s3# of { (# s4#, arr# #) ->
(# s4#, Array l u arr# #) }}}}
{-# INLINE unsafeFreezeSTArray #-}
unsafeFreezeSTArray :: Ix i => STArray s i e -> ST s (Array i e)
unsafeFreezeSTArray (STArray l u marr#) = ST $ \s1# ->
case unsafeFreezeArray# marr# s1# of { (# s2#, arr# #) ->
(# s2#, Array l u arr# #) }
thawSTArray :: Ix i => Array i e -> ST s (STArray s i e)
thawSTArray (Array l u arr#) = ST $ \s1# ->
case rangeSize (l,u) of { I# n# ->
case newArray# n# arrEleBottom s1# of { (# s2#, marr# #) ->
let copy i# s3# | i# ==# n# = s3#
| otherwise =
case indexArray# arr# i# of { (# e #) ->
case writeArray# marr# i# e s3# of { s4# ->
copy (i# +# 1#) s4# }} in
case copy 0# s2# of { s3# ->
(# s3#, STArray l u marr# #) }}}
{-# INLINE unsafeThawSTArray #-}
unsafeThawSTArray :: Ix i => Array i e -> ST s (STArray s i e)
unsafeThawSTArray (Array l u arr#) = ST $ \s1# ->
case unsafeThawArray# arr# s1# of { (# s2#, marr# #) ->
(# s2#, STArray l u marr# #) }
\end{code}
|