1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#ifndef PROBLEM_H
#define PROBLEM_H
#include <array>
#include <vector>
#include <Eigen/Core>
#include "meta.h"
namespace cppoptlib {
template<typename Scalar_, int Dim_ = Eigen::Dynamic>
class Problem {
public:
static const int Dim = Dim_;
typedef Scalar_ Scalar;
using TVector = Eigen::Matrix<Scalar, Dim, 1>;
using THessian = Eigen::Matrix<Scalar, Dim, Dim>;
using TCriteria = Criteria<Scalar>;
using TIndex = typename TVector::Index;
using MatrixType = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
public:
Problem() {}
virtual ~Problem()= default;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
virtual bool callback(const Criteria<Scalar> &state, const TVector &x) {
return true;
}
virtual bool detailed_callback(const Criteria<Scalar> &state, SimplexOp op, int index, const MatrixType &x, std::vector<Scalar> f) {
return true;
}
#pragma GCC diagnostic pop
/**
* @brief returns objective value in x
* @details [long description]
*
* @param x [description]
* @return [description]
*/
virtual Scalar value(const TVector &x) = 0;
/**
* @brief overload value for nice syntax
* @details [long description]
*
* @param x [description]
* @return [description]
*/
Scalar operator()(const TVector &x) {
return value(x);
}
/**
* @brief returns gradient in x as reference parameter
* @details should be overwritten by symbolic gradient
*
* @param grad [description]
*/
virtual void gradient(const TVector &x, TVector &grad) {
finiteGradient(x, grad);
}
/**
* @brief This computes the hessian
* @details should be overwritten by symbolic hessian, if solver relies on hessian
*/
virtual void hessian(const TVector &x, THessian &hessian) {
finiteHessian(x, hessian);
}
virtual bool checkGradient(const TVector &x, int accuracy = 3) {
// TODO: check if derived class exists:
// int(typeid(&Rosenbrock<double>::gradient) == typeid(&Problem<double>::gradient)) == 1 --> overwritten
const TIndex D = x.rows();
TVector actual_grad(D);
TVector expected_grad(D);
gradient(x, actual_grad);
finiteGradient(x, expected_grad, accuracy);
for (TIndex d = 0; d < D; ++d) {
Scalar scale = std::max(static_cast<Scalar>(std::max(fabs(actual_grad[d]), fabs(expected_grad[d]))), Scalar(1.));
if(fabs(actual_grad[d]-expected_grad[d])>1e-2 * scale)
return false;
}
return true;
}
virtual bool checkHessian(const TVector &x, int accuracy = 3) {
// TODO: check if derived class exists:
// int(typeid(&Rosenbrock<double>::gradient) == typeid(&Problem<double>::gradient)) == 1 --> overwritten
const TIndex D = x.rows();
THessian actual_hessian = THessian::Zero(D, D);
THessian expected_hessian = THessian::Zero(D, D);
hessian(x, actual_hessian);
finiteHessian(x, expected_hessian, accuracy);
for (TIndex d = 0; d < D; ++d) {
for (TIndex e = 0; e < D; ++e) {
Scalar scale = std::max(static_cast<Scalar>(std::max(fabs(actual_hessian(d, e)), fabs(expected_hessian(d, e)))), Scalar(1.));
if(fabs(actual_hessian(d, e)- expected_hessian(d, e))>1e-1 * scale)
return false;
}
}
return true;
}
void finiteGradient(const TVector &x, TVector &grad, int accuracy = 0) {
// accuracy can be 0, 1, 2, 3
const Scalar eps = 2.2204e-6;
static const std::array<std::vector<Scalar>, 4> coeff =
{ { {1, -1}, {1, -8, 8, -1}, {-1, 9, -45, 45, -9, 1}, {3, -32, 168, -672, 672, -168, 32, -3} } };
static const std::array<std::vector<Scalar>, 4> coeff2 =
{ { {1, -1}, {-2, -1, 1, 2}, {-3, -2, -1, 1, 2, 3}, {-4, -3, -2, -1, 1, 2, 3, 4} } };
static const std::array<Scalar, 4> dd = {2, 12, 60, 840};
grad.resize(x.rows());
TVector& xx = const_cast<TVector&>(x);
const int innerSteps = 2*(accuracy+1);
const Scalar ddVal = dd[accuracy]*eps;
for (TIndex d = 0; d < x.rows(); d++) {
grad[d] = 0;
for (int s = 0; s < innerSteps; ++s)
{
Scalar tmp = xx[d];
xx[d] += coeff2[accuracy][s]*eps;
grad[d] += coeff[accuracy][s]*value(xx);
xx[d] = tmp;
}
grad[d] /= ddVal;
}
}
void finiteHessian(const TVector &x, THessian &hessian, int accuracy = 0) {
const Scalar eps = std::numeric_limits<Scalar>::epsilon()*10e7;
hessian.resize(x.rows(), x.rows());
TVector& xx = const_cast<TVector&>(x);
if(accuracy == 0) {
for (TIndex i = 0; i < x.rows(); i++) {
for (TIndex j = 0; j < x.rows(); j++) {
Scalar tmpi = xx[i];
Scalar tmpj = xx[j];
Scalar f4 = value(xx);
xx[i] += eps;
xx[j] += eps;
Scalar f1 = value(xx);
xx[j] -= eps;
Scalar f2 = value(xx);
xx[j] += eps;
xx[i] -= eps;
Scalar f3 = value(xx);
hessian(i, j) = (f1 - f2 - f3 + f4) / (eps * eps);
xx[i] = tmpi;
xx[j] = tmpj;
}
}
} else {
/*
\displaystyle{{\frac{\partial^2{f}}{\partial{x}\partial{y}}}\approx
\frac{1}{600\,h^2} \left[\begin{matrix}
-63(f_{1,-2}+f_{2,-1}+f_{-2,1}+f_{-1,2})+\\
63(f_{-1,-2}+f_{-2,-1}+f_{1,2}+f_{2,1})+\\
44(f_{2,-2}+f_{-2,2}-f_{-2,-2}-f_{2,2})+\\
74(f_{-1,-1}+f_{1,1}-f_{1,-1}-f_{-1,1})
\end{matrix}\right] }
*/
for (TIndex i = 0; i < x.rows(); i++) {
for (TIndex j = 0; j < x.rows(); j++) {
Scalar tmpi = xx[i];
Scalar tmpj = xx[j];
Scalar term_1 = 0;
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 1*eps; xx[j] += -2*eps; term_1 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 2*eps; xx[j] += -1*eps; term_1 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -2*eps; xx[j] += 1*eps; term_1 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -1*eps; xx[j] += 2*eps; term_1 += value(xx);
Scalar term_2 = 0;
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -1*eps; xx[j] += -2*eps; term_2 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -2*eps; xx[j] += -1*eps; term_2 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 1*eps; xx[j] += 2*eps; term_2 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 2*eps; xx[j] += 1*eps; term_2 += value(xx);
Scalar term_3 = 0;
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 2*eps; xx[j] += -2*eps; term_3 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -2*eps; xx[j] += 2*eps; term_3 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -2*eps; xx[j] += -2*eps; term_3 -= value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 2*eps; xx[j] += 2*eps; term_3 -= value(xx);
Scalar term_4 = 0;
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -1*eps; xx[j] += -1*eps; term_4 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 1*eps; xx[j] += 1*eps; term_4 += value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += 1*eps; xx[j] += -1*eps; term_4 -= value(xx);
xx[i] = tmpi; xx[j] = tmpj; xx[i] += -1*eps; xx[j] += 1*eps; term_4 -= value(xx);
xx[i] = tmpi;
xx[j] = tmpj;
hessian(i, j) = (-63 * term_1+63 * term_2+44 * term_3+74 * term_4)/(600.0 * eps * eps);
}
}
}
}
};
}
#endif /* PROBLEM_H */
|