File: cmaessolver.h

package info (click to toggle)
cppnumericalsolvers 1.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 372 kB
  • sloc: cpp: 2,694; python: 236; sh: 20; makefile: 10
file content (205 lines) | stat: -rw-r--r-- 8,664 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// CppNumericalSolver
#ifndef CMAES_H_
#define CMAES_H_

#include <random>
#include <Eigen/Dense>
#include "isolver.h"

namespace cppoptlib {

/**
 * @brief Covariance Matrix Adaptation
 */
template<typename TProblem>
class CMAesSolver : public ISolver<TProblem, 1> {
public:
    using Super = ISolver<TProblem, 1>;
    using typename Super::Scalar;
    using typename Super::TVector;
    using typename Super::THessian;
    using typename Super::TCriteria;
    using TMatrix = Eigen::Matrix<Scalar, TProblem::Dim, Eigen::Dynamic>;
    using TVarVector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;

protected:
    std::mt19937 gen;
    Scalar m_stepSize;
    /*
     * @brief Create a vector sampled from a normal distribution
     *
     */
    TVector normDist(const int n) {
        TVector sample = TVector::Zero(n);
        std::normal_distribution<Scalar> d(0, 1);
        for (int i = 0; i < n; ++i) {
          sample[i] = d(gen);
        }
        return sample;
    }

    std::vector<size_t> index_partial_sort(const TVarVector &x, Eigen::ArrayXd::Index N)
    {
        eigen_assert(x.size() >= N);
        std::vector<size_t> allIndices(x.size()), indices(N);
        for(size_t i = 0; i < allIndices.size(); i++) {
            allIndices[i] = i;
        }
        partial_sort(allIndices.begin(), allIndices.begin() + N, allIndices.end(), [&x](size_t i1, size_t i2) { return x[i1] < x[i2]; });
        //std::cout << "SORTED: ";
        for (Eigen::ArrayXd::Index i = 0; i < N; i++) {
            indices[i] = allIndices[i];
            //std::cout << indices[i] << ",";
        }
        //std::cout << std::endl;
        return indices;
    }

public:
    CMAesSolver() : gen((std::random_device())()) {
        m_stepSize = 0.5;
        // Set some sensible defaults for the stop criteria
        Super::m_stop.iterations = 1e5;
        Super::m_stop.gradNorm = 0; // Switch this off
        Super::m_stop.condition = 1e14;
        Super::m_stop.xDelta = 1e-7;
        Super::m_stop.fDelta = 1e-9;
    }

    void minimize(TProblem &objFunc, TVector &x0) {
        TVector var0 = TVector::Ones(x0.rows());
        this->minimize(objFunc, x0, var0);
    }

    /**
    * @brief minimize
    * @details [long description]
    *
    * @param objFunc [description]
    */
    void minimize(TProblem &objFunc, TVector &x0, const TVector &var0) {
        const int n = x0.rows();
        eigen_assert(x0.rows() == var0.rows());
        int la = ceil(4 + round(3 * log(n)));
        const int mu = floor(la / 2);
        TVarVector w = TVarVector::Zero(mu);
        for (int i = 0; i < mu; ++i) {
          w[i] = log(mu+1/2)-log(i+1);
        }
        w /= w.sum();
        const Scalar mu_eff = (w.sum()*w.sum()) / w.dot(w);
        la = std::max<int>(16, la); // Increase to 16 samples for very small populations, but AFTER calcaulting mu_eff
        const Scalar cc     = (4. + mu_eff / n) / (n + 4. + 2.*mu_eff/n);
        const Scalar cs     = (mu_eff + 2.) / (n + mu_eff + 5.);
        const Scalar c1     = 2. / (pow(n + 1.3, 2.) + mu_eff);
        const Scalar cmu    = std::min(1. - c1, 2.*(mu_eff - 2. + 1./mu_eff) / (pow(n+2, 2.) + mu_eff));
        const Scalar ds     = 1. + cs + 2.*std::max(0., sqrt((mu_eff - 1.) / (n + 1.)) - 1.);
        const Scalar chi    = sqrt(n) * (1. - 1./(4.*n) + 1./(21.*n*n));
        const Scalar hsig_thr = (1.4 + 2 / (n + 1.)) * chi;

        TVector pc = TVector::Zero(n);
        TVector ps = TVector::Zero(n);
        THessian B = THessian::Identity();
        THessian D = THessian::Identity();
        THessian C = B*D*(B*D).transpose();

        Scalar sigma = m_stepSize;

        TVector xmean = x0;
        TVector zmean = TVector::Zero(n);
        TMatrix arz(n, la);
        TMatrix arx(n, la);
        TVarVector costs(la);
        Scalar prevCost = objFunc.value(x0);
        // CMA-ES Main Loop
        int eigen_last_eval = 0;
        int eigen_next_eval = std::max<Scalar>(1, 1/(10*n*(c1+cmu)));
        this->m_current.reset();
        if (Super::m_debug >= DebugLevel::Low) {
            std::cout << "CMA-ES Initial Config" << std::endl;
            std::cout << "n " << n << " la " << la << " mu " << mu << " mu_eff " << mu_eff << " sigma " << sigma << std::endl;
            std::cout << "cs " << cs << " ds " << ds << " chi " << chi << " cc " << cc << " c1 " << c1 << " cmu " << cmu
                      << " hsig_thr " << hsig_thr << std::endl;
            std::cout << "C" << std::endl << C << std::endl;
            std::cout << "Hessian will be updated every " << eigen_next_eval << " iterations." << std::endl;
            std::cout << "Iteration: " << this->m_current.iterations << " best cost " << prevCost << " sigma " << sigma
                      << " cond " << this->m_current.condition << " xmean " << x0.transpose() << std::endl;
        }
        do {
            for (int k = 0; k < la; ++k) {
              arz.col(k) = normDist(n);
              arx.col(k) = xmean + sigma * B*D*arz.col(k);
              costs[k] = objFunc(arx.col(k));
            }
            if (Super::m_debug >= DebugLevel::High) {
                std::cout << "arz" << std::endl << arz << std::endl;
                std::cout << "arx" << std::endl << arx << std::endl;
                std::cout << "costs " << costs.transpose() << std::endl;
            }
            std::vector<size_t> indices = index_partial_sort(costs, mu);
            xmean = TVector::Zero(n);
            zmean = TVector::Zero(n);
            for (int k = 0; k < mu; k++) {
              zmean += w[k]*arz.col(indices[k]);
              xmean += w[k]*arx.col(indices[k]);
            }
            // Update evolution paths
            ps = (1. - cs)*ps + sqrt(cs*(2. - cs)*mu_eff) * B*zmean;
            Scalar hsig = (ps.norm()/sqrt(pow(1 - (1. - cs), (2 * (this->m_current.iterations + 1)))) < hsig_thr) ? 1.0 : 0.0;
            pc = (1. - cc)*pc + hsig*sqrt(cc*(2. - cc)*mu_eff)*(B*D*zmean);
            // Adapt covariance matrix
            C = (1 - c1 - cmu)*C
                + c1*(pc*pc.transpose() + (1 - hsig)*cc*(2 - cc)*C);
            for (int k = 0; k < mu; ++k) {
                TVector temp = B*D*arz.col(k);
                C += cmu*w(k)*temp*temp.transpose();
            }
            sigma = sigma * exp((cs/ds) * ((ps).norm()/chi - 1.));

            ++Super::m_current.iterations;
            if ((Super::m_current.iterations - eigen_last_eval) == eigen_next_eval) {
                // Update B and D
                eigen_last_eval = Super::m_current.iterations;
                Eigen::SelfAdjointEigenSolver<THessian> eigenSolver(C);
                B = eigenSolver.eigenvectors();
                D.diagonal() = eigenSolver.eigenvalues().array().sqrt();
                if (Super::m_debug >= DebugLevel::High) {
                    std::cout << "Updated hessian." << std::endl;
                    std::cout << "C" << std::endl << C << std::endl;
                    std::cout << "B" << std::endl << B << std::endl;
                    std::cout << "D" << std::endl << D << std::endl;
                }
            }
            Super::m_current.condition = D.diagonal().maxCoeff() / D.diagonal().minCoeff();
            Super::m_current.xDelta = (xmean - x0).norm();
            x0 = xmean;
            Super::m_current.fDelta = fabs(costs[indices[0]] - prevCost);
            prevCost = costs[indices[0]];
            if (Super::m_debug >= DebugLevel::Low) {
                std::cout << "Iteration: " << this->m_current.iterations << " best cost " << costs[indices[0]] << " sigma " << sigma
                          << " cond " << this->m_current.condition << " xmean " << xmean.transpose() << std::endl;
            }
            if (fabs(costs[indices[0]] - costs[indices[mu-1]]) < 1e-6) {
                sigma = sigma * exp(0.2+cs/ds);
                if (Super::m_debug >= DebugLevel::Low) {
                    std::cout << "Flat fitness " << costs[indices[0]] << " " << costs[indices[mu-1]] << std::endl;
                }
            }
            Super::m_status = checkConvergence(this->m_stop, this->m_current);
        } while (objFunc.callback(this->m_current, x0) && (this->m_status == Status::Continue));
        // Return the best evaluated solution
        x0 = xmean;
        m_stepSize = sigma;
        if (Super::m_debug >= DebugLevel::Low) {
            std::cout << "Stop" << std::endl;
            this->m_stop.print(std::cout);
            std::cout << "Current" << std::endl;
            this->m_current.print(std::cout);
            std::cout << "Reason: " << Super::m_status << std::endl;
        }
    }
};

} /* namespace cppoptlib */

#endif /* CMAES_H_ */