1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
// CppNumericalSolver
#include <iostream>
#include <list>
#include <Eigen/LU>
#include "isolver.h"
#include "../boundedproblem.h"
#include "../linesearch/morethuente.h"
#ifndef LBFGSBSOLVER_H
#define LBFGSBSOLVER_H
namespace cppoptlib {
template<typename TProblem>
class LbfgsbSolver : public ISolver<TProblem, 1> {
public:
using Superclass = ISolver<TProblem, 1>;
using typename Superclass::Scalar;
using typename Superclass::TVector;
using MatrixType = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
using VariableTVector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
protected:
// workspace matrices
MatrixType W, M;
Scalar theta;
int DIM;
int m_historySize = 5;
/**
* @brief sort pairs (k,v) according v ascending
* @details [long description]
*
* @param v [description]
* @return [description]
*/
std::vector<int> sort_indexes(const std::vector< std::pair<int, Scalar> > &v) {
std::vector<int> idx(v.size());
for (size_t i = 0; i != idx.size(); ++i)
idx[i] = v[i].first;
sort(idx.begin(), idx.end(), [&v](size_t i1, size_t i2) {
return v[i1].second < v[i2].second;
});
return idx;
}
/**
* @brief Algorithm CP: Computation of the generalized Cauchy point
* @details PAGE 8
*
* @param c [description]
*/
void getGeneralizedCauchyPoint(const TProblem &problem, const TVector &x, const TVector &g, TVector &x_cauchy, VariableTVector &c) {
const int DIM = x.rows();
// Given x,l,u,g, and B = \theta I-WMW
// {all t_i} = { (idx,value), ... }
// TODO: use "std::set" ?
std::vector<std::pair<int, Scalar> > SetOfT;
// the feasible set is implicitly given by "SetOfT - {t_i==0}"
TVector d = -g;
// n operations
for (int j = 0; j < DIM; j++) {
if (g(j) == 0) {
SetOfT.push_back(std::make_pair(j, std::numeric_limits<Scalar>::max()));
} else {
Scalar tmp = 0;
if (g(j) < 0) {
tmp = (x(j) - problem.upperBound()(j)) / g(j);
} else {
tmp = (x(j) - problem.lowerBound()(j)) / g(j);
}
SetOfT.push_back(std::make_pair(j, tmp));
if (tmp == 0) d(j) = 0;
}
}
// sortedindices [1,0,2] means the minimal element is on the 1-st entry
std::vector<int> sortedIndices = sort_indexes(SetOfT);
x_cauchy = x;
// Initialize
// p := W^Scalar*p
VariableTVector p = (W.transpose() * d); // (2mn operations)
// c := 0
c = VariableTVector::Zero(W.cols());
// f' := g^Scalar*d = -d^Td
Scalar f_prime = -d.dot(d); // (n operations)
// f'' := \theta*d^Scalar*d-d^Scalar*W*M*W^Scalar*d = -\theta*f' - p^Scalar*M*p
Scalar f_doubleprime = (Scalar)(-1.0 * theta) * f_prime - p.dot(M * p); // (O(m^2) operations)
f_doubleprime = std::max(std::numeric_limits<Scalar>::epsilon(), f_doubleprime);
Scalar f_dp_orig = f_doubleprime;
// \delta t_min := -f'/f''
Scalar dt_min = -f_prime / f_doubleprime;
// t_old := 0
Scalar t_old = 0;
// b := argmin {t_i , t_i >0}
int i = 0;
for (int j = 0; j < DIM; j++) {
i = j;
if (SetOfT[sortedIndices[j]].second > 0)
break;
}
int b = sortedIndices[i];
// see below
// t := min{t_i : i in F}
Scalar t = SetOfT[b].second;
// \delta Scalar := t - 0
Scalar dt = t ;
// examination of subsequent segments
while ((dt_min >= dt) && (i < DIM)) {
if (d(b) > 0)
x_cauchy(b) = problem.upperBound()(b);
else if (d(b) < 0)
x_cauchy(b) = problem.lowerBound()(b);
// z_b = x_p^{cp} - x_b
Scalar zb = x_cauchy(b) - x(b);
// c := c +\delta t*p
c += dt * p;
// cache
VariableTVector wbt = W.row(b);
f_prime += dt * f_doubleprime + (Scalar) g(b) * g(b) + (Scalar) theta * g(b) * zb - (Scalar) g(b) *
wbt.transpose() * (M * c);
f_doubleprime += (Scalar) - 1.0 * theta * g(b) * g(b)
- (Scalar) 2.0 * (g(b) * (wbt.dot(M * p)))
- (Scalar) g(b) * g(b) * wbt.transpose() * (M * wbt);
f_doubleprime = std::max(std::numeric_limits<Scalar>::epsilon() * f_dp_orig, f_doubleprime);
p += g(b) * wbt.transpose();
d(b) = 0;
dt_min = -f_prime / f_doubleprime;
t_old = t;
++i;
if (i < DIM) {
b = sortedIndices[i];
t = SetOfT[b].second;
dt = t - t_old;
}
}
dt_min = std::max(dt_min, (Scalar)0.0);
t_old += dt_min;
#pragma omp parallel for
for (int ii = i; ii < x_cauchy.rows(); ii++) {
x_cauchy(sortedIndices[ii]) = x(sortedIndices[ii]) + t_old * d(sortedIndices[ii]);
}
c += dt_min * p;
}
/**
* @brief find alpha* = max {a : a <= 1 and l_i-xc_i <= a*d_i <= u_i-xc_i}
* @details [long description]
*
* @param FreeVariables [description]
* @return [description]
*/
Scalar findAlpha(const TProblem &problem, TVector &x_cp, VariableTVector &du, std::vector<int> &FreeVariables) {
Scalar alphastar = 1;
const unsigned int n = FreeVariables.size();
assert(du.rows() == n);
for (unsigned int i = 0; i < n; i++) {
if (du(i) > 0) {
alphastar = std::min(alphastar, (problem.upperBound()(FreeVariables[i]) - x_cp(FreeVariables[i])) / du(i));
} else {
alphastar = std::min(alphastar, (problem.lowerBound()(FreeVariables[i]) - x_cp(FreeVariables[i])) / du(i));
}
}
return alphastar;
}
/**
* @brief solving unbounded probelm
* @details [long description]
*
* @param SubspaceMin [description]
*/
void SubspaceMinimization(const TProblem &problem, TVector &x_cauchy, TVector &x, VariableTVector &c, TVector &g,
TVector &SubspaceMin) {
Scalar theta_inverse = 1 / theta;
std::vector<int> FreeVariablesIndex;
for (int i = 0; i < x_cauchy.rows(); i++) {
if ((x_cauchy(i) != problem.upperBound()(i)) && (x_cauchy(i) != problem.lowerBound()(i))) {
FreeVariablesIndex.push_back(i);
}
}
const int FreeVarCount = FreeVariablesIndex.size();
MatrixType WZ = MatrixType::Zero(W.cols(), FreeVarCount);
for (int i = 0; i < FreeVarCount; i++)
WZ.col(i) = W.row(FreeVariablesIndex[i]);
TVector rr = (g + theta * (x_cauchy - x) - W * (M * c));
// r=r(FreeVariables);
MatrixType r = MatrixType::Zero(FreeVarCount, 1);
for (int i = 0; i < FreeVarCount; i++)
r.row(i) = rr.row(FreeVariablesIndex[i]);
// STEP 2: "v = w^T*Z*r" and STEP 3: "v = M*v"
VariableTVector v = M * (WZ * r);
// STEP 4: N = 1/theta*W^T*Z*(W^T*Z)^T
MatrixType N = theta_inverse * WZ * WZ.transpose();
// N = I - MN
N = MatrixType::Identity(N.rows(), N.rows()) - M * N;
// STEP: 5
// v = N^{-1}*v
v = N.lu().solve(v);
// STEP: 6
// HERE IS A MISTAKE IN THE ORIGINAL PAPER!
VariableTVector du = -theta_inverse * r - theta_inverse * theta_inverse * WZ.transpose() * v;
// STEP: 7
Scalar alpha_star = findAlpha(problem, x_cauchy, du, FreeVariablesIndex);
// STEP: 8
VariableTVector dStar = alpha_star * du;
SubspaceMin = x_cauchy;
for (int i = 0; i < FreeVarCount; i++) {
SubspaceMin(FreeVariablesIndex[i]) = SubspaceMin(FreeVariablesIndex[i]) + dStar(i);
}
}
public:
void setHistorySize(const int hs) { m_historySize = hs; }
void minimize(TProblem &problem, TVector &x0) {
DIM = x0.rows();
theta = 1.0;
W = MatrixType::Zero(DIM, 0);
M = MatrixType::Zero(0, 0);
MatrixType yHistory = MatrixType::Zero(DIM, 0);
MatrixType sHistory = MatrixType::Zero(DIM, 0);
TVector x = x0, g = x0;
Scalar f = problem.value(x);
problem.gradient(x, g);
// conv. crit.
auto noConvergence =
[&](TVector &x, TVector &g)->bool {
return (((x - g).cwiseMax(problem.lowerBound()).cwiseMin(problem.upperBound()) - x).template lpNorm<Eigen::Infinity>() >= 1e-4);
};
this->m_current.reset();
this->m_status = Status::Continue;
while (problem.callback(this->m_current, x) && noConvergence(x, g) && (this->m_status == Status::Continue)) {
Scalar f_old = f;
TVector x_old = x;
TVector g_old = g;
// STEP 2: compute the cauchy point
TVector CauchyPoint = TVector::Zero(DIM);
VariableTVector c = VariableTVector::Zero(W.cols());
getGeneralizedCauchyPoint(problem, x, g, CauchyPoint, c);
// STEP 3: compute a search direction d_k by the primal method for the sub-problem
TVector SubspaceMin;
SubspaceMinimization(problem, CauchyPoint, x, c, g, SubspaceMin);
// STEP 4: perform linesearch and STEP 5: compute gradient
Scalar alpha_init = 1.0;
const Scalar rate = MoreThuente<TProblem, 1>::linesearch(x, SubspaceMin-x , problem, alpha_init);
// update current guess and function information
x = x - rate*(x-SubspaceMin);
f = problem.value(x);
problem.gradient(x, g);
// prepare for next iteration
TVector newY = g - g_old;
TVector newS = x - x_old;
// STEP 6:
Scalar test = newS.dot(newY);
test = (test < 0) ? -1.0 * test : test;
if (test > 1e-7 * newY.squaredNorm()) {
if (yHistory.cols() < m_historySize) {
yHistory.conservativeResize(DIM, yHistory.cols() + 1);
sHistory.conservativeResize(DIM, sHistory.cols() + 1);
} else {
yHistory.leftCols(m_historySize - 1) = yHistory.rightCols(m_historySize - 1).eval();
sHistory.leftCols(m_historySize - 1) = sHistory.rightCols(m_historySize - 1).eval();
}
yHistory.rightCols(1) = newY;
sHistory.rightCols(1) = newS;
// STEP 7:
theta = (Scalar)(newY.transpose() * newY) / (newY.transpose() * newS);
W = MatrixType::Zero(yHistory.rows(), yHistory.cols() + sHistory.cols());
W << yHistory, (theta * sHistory);
MatrixType A = sHistory.transpose() * yHistory;
MatrixType L = A.template triangularView<Eigen::StrictlyLower>();
MatrixType MM(A.rows() + L.rows(), A.rows() + L.cols());
MatrixType D = -1 * A.diagonal().asDiagonal();
MM << D, L.transpose(), L, ((sHistory.transpose() * sHistory) * theta);
M = MM.inverse();
}
if (fabs(f_old - f) < 1e-8) {
// successive function values too similar
break;
}
++this->m_current.iterations;
this->m_current.gradNorm = g.norm();
this->m_status = checkConvergence(this->m_stop, this->m_current);
}
x0 = x;
if (this->m_debug > DebugLevel::None) {
std::cout << "Stop status was: " << this->m_status << std::endl;
std::cout << "Stop criteria were: " << std::endl << this->m_stop << std::endl;
std::cout << "Current values are: " << std::endl << this->m_current << std::endl;
}
}
};
}
/* namespace cppoptlib */
#endif /* LBFGSBSOLVER_H_ */
|