File: lbfgsbsolver.h

package info (click to toggle)
cppnumericalsolvers 1.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 372 kB
  • sloc: cpp: 2,694; python: 236; sh: 20; makefile: 10
file content (287 lines) | stat: -rw-r--r-- 10,926 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// CppNumericalSolver
#include <iostream>
#include <list>
#include <Eigen/LU>
#include "isolver.h"
#include "../boundedproblem.h"
#include "../linesearch/morethuente.h"
#ifndef LBFGSBSOLVER_H
#define LBFGSBSOLVER_H
namespace cppoptlib {
template<typename TProblem>
class LbfgsbSolver : public ISolver<TProblem, 1> {
  public:
    using Superclass = ISolver<TProblem, 1>;
    using typename Superclass::Scalar;
    using typename Superclass::TVector;
    using MatrixType = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
    using VariableTVector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
  protected:
  // workspace matrices
  MatrixType W, M;
  Scalar theta;
  int DIM;
  int m_historySize = 5;

  /**
   * @brief sort pairs (k,v) according v ascending
   * @details [long description]
   *
   * @param v [description]
   * @return [description]
   */
  std::vector<int> sort_indexes(const std::vector< std::pair<int, Scalar> > &v) {
    std::vector<int> idx(v.size());
    for (size_t i = 0; i != idx.size(); ++i)
      idx[i] = v[i].first;
    sort(idx.begin(), idx.end(), [&v](size_t i1, size_t i2) {
      return v[i1].second < v[i2].second;
    });
    return idx;
  }
  /**
   * @brief Algorithm CP: Computation of the generalized Cauchy point
   * @details PAGE 8
   *
   * @param c [description]
   */
  void getGeneralizedCauchyPoint(const TProblem &problem, const TVector &x, const TVector &g, TVector &x_cauchy, VariableTVector &c) {
    const int DIM = x.rows();
    // Given x,l,u,g, and B = \theta I-WMW
    // {all t_i} = { (idx,value), ... }
    // TODO: use "std::set" ?
    std::vector<std::pair<int, Scalar> > SetOfT;
    // the feasible set is implicitly given by "SetOfT - {t_i==0}"
    TVector d = -g;
    // n operations
    for (int j = 0; j < DIM; j++) {
      if (g(j) == 0) {
        SetOfT.push_back(std::make_pair(j, std::numeric_limits<Scalar>::max()));
      } else {
        Scalar tmp = 0;
        if (g(j) < 0) {
          tmp = (x(j) - problem.upperBound()(j)) / g(j);
        } else {
          tmp = (x(j) - problem.lowerBound()(j)) / g(j);
        }
        SetOfT.push_back(std::make_pair(j, tmp));
      if (tmp == 0) d(j) = 0;
      }
    }
    // sortedindices [1,0,2] means the minimal element is on the 1-st entry
    std::vector<int> sortedIndices = sort_indexes(SetOfT);
    x_cauchy = x;
    // Initialize
    // p :=     W^Scalar*p
    VariableTVector p = (W.transpose() * d);                     // (2mn operations)
    // c :=     0
    c = VariableTVector::Zero(W.cols());
    // f' :=    g^Scalar*d = -d^Td
    Scalar f_prime = -d.dot(d);                         // (n operations)
    // f'' :=   \theta*d^Scalar*d-d^Scalar*W*M*W^Scalar*d = -\theta*f' - p^Scalar*M*p
    Scalar f_doubleprime = (Scalar)(-1.0 * theta) * f_prime - p.dot(M * p); // (O(m^2) operations)
    f_doubleprime = std::max(std::numeric_limits<Scalar>::epsilon(), f_doubleprime);
    Scalar f_dp_orig = f_doubleprime;
    // \delta t_min :=  -f'/f''
    Scalar dt_min = -f_prime / f_doubleprime;
    // t_old :=     0
    Scalar t_old = 0;
    // b :=     argmin {t_i , t_i >0}
    int i = 0;
    for (int j = 0; j < DIM; j++) {
      i = j;
      if (SetOfT[sortedIndices[j]].second > 0)
        break;
    }
    int b = sortedIndices[i];
    // see below
    // t                    :=  min{t_i : i in F}
    Scalar t = SetOfT[b].second;
    // \delta Scalar             :=  t - 0
    Scalar dt = t ;
    // examination of subsequent segments
    while ((dt_min >= dt) && (i < DIM)) {
      if (d(b) > 0)
        x_cauchy(b) = problem.upperBound()(b);
      else if (d(b) < 0)
        x_cauchy(b) = problem.lowerBound()(b);
      // z_b = x_p^{cp} - x_b
      Scalar zb = x_cauchy(b) - x(b);
      // c   :=  c +\delta t*p
      c += dt * p;
      // cache
      VariableTVector wbt = W.row(b);
      f_prime += dt * f_doubleprime + (Scalar) g(b) * g(b) + (Scalar) theta * g(b) * zb - (Scalar) g(b) *
      wbt.transpose() * (M * c);
      f_doubleprime += (Scalar) - 1.0 * theta * g(b) * g(b)
                       - (Scalar) 2.0 * (g(b) * (wbt.dot(M * p)))
                       - (Scalar) g(b) * g(b) * wbt.transpose() * (M * wbt);
      f_doubleprime = std::max(std::numeric_limits<Scalar>::epsilon() * f_dp_orig, f_doubleprime);
      p += g(b) * wbt.transpose();
      d(b) = 0;
      dt_min = -f_prime / f_doubleprime;
      t_old = t;
      ++i;
      if (i < DIM) {
        b = sortedIndices[i];
        t = SetOfT[b].second;
        dt = t - t_old;
      }
    }
    dt_min = std::max(dt_min, (Scalar)0.0);
    t_old += dt_min;
    #pragma omp parallel for
    for (int ii = i; ii < x_cauchy.rows(); ii++) {
      x_cauchy(sortedIndices[ii]) = x(sortedIndices[ii]) + t_old * d(sortedIndices[ii]);
    }
    c += dt_min * p;
  }
  /**
   * @brief find alpha* = max {a : a <= 1 and  l_i-xc_i <= a*d_i <= u_i-xc_i}
   * @details [long description]
   *
   * @param FreeVariables [description]
   * @return [description]
   */
  Scalar findAlpha(const TProblem &problem, TVector &x_cp, VariableTVector &du, std::vector<int> &FreeVariables) {
    Scalar alphastar = 1;
    const unsigned int n = FreeVariables.size();
    assert(du.rows() == n);
    for (unsigned int i = 0; i < n; i++) {
      if (du(i) > 0) {
        alphastar = std::min(alphastar, (problem.upperBound()(FreeVariables[i]) - x_cp(FreeVariables[i])) / du(i));
      } else {
        alphastar = std::min(alphastar, (problem.lowerBound()(FreeVariables[i]) - x_cp(FreeVariables[i])) / du(i));
      }
    }
    return alphastar;
  }
  /**
   * @brief solving unbounded probelm
   * @details [long description]
   *
   * @param SubspaceMin [description]
   */
  void SubspaceMinimization(const TProblem &problem, TVector &x_cauchy, TVector &x, VariableTVector &c, TVector &g,
  TVector &SubspaceMin) {
    Scalar theta_inverse = 1 / theta;
    std::vector<int> FreeVariablesIndex;
    for (int i = 0; i < x_cauchy.rows(); i++) {
      if ((x_cauchy(i) != problem.upperBound()(i)) && (x_cauchy(i) != problem.lowerBound()(i))) {
        FreeVariablesIndex.push_back(i);
      }
    }
    const int FreeVarCount = FreeVariablesIndex.size();
    MatrixType WZ = MatrixType::Zero(W.cols(), FreeVarCount);
    for (int i = 0; i < FreeVarCount; i++)
      WZ.col(i) = W.row(FreeVariablesIndex[i]);
    TVector rr = (g + theta * (x_cauchy - x) - W * (M * c));
    // r=r(FreeVariables);
    MatrixType r = MatrixType::Zero(FreeVarCount, 1);
    for (int i = 0; i < FreeVarCount; i++)
      r.row(i) = rr.row(FreeVariablesIndex[i]);
    // STEP 2: "v = w^T*Z*r" and STEP 3: "v = M*v"
    VariableTVector v = M * (WZ * r);
    // STEP 4: N = 1/theta*W^T*Z*(W^T*Z)^T
    MatrixType N = theta_inverse * WZ * WZ.transpose();
    // N = I - MN
    N = MatrixType::Identity(N.rows(), N.rows()) - M * N;
    // STEP: 5
    // v = N^{-1}*v
    v = N.lu().solve(v);
    // STEP: 6
    // HERE IS A MISTAKE IN THE ORIGINAL PAPER!
    VariableTVector du = -theta_inverse * r - theta_inverse * theta_inverse * WZ.transpose() * v;
    // STEP: 7
    Scalar alpha_star = findAlpha(problem, x_cauchy, du, FreeVariablesIndex);
    // STEP: 8
    VariableTVector dStar = alpha_star * du;
    SubspaceMin = x_cauchy;
    for (int i = 0; i < FreeVarCount; i++) {
      SubspaceMin(FreeVariablesIndex[i]) = SubspaceMin(FreeVariablesIndex[i]) + dStar(i);
    }
  }
 public:
  void setHistorySize(const int hs) { m_historySize = hs; }

  void minimize(TProblem &problem, TVector &x0) {
    DIM = x0.rows();
    theta = 1.0;
    W = MatrixType::Zero(DIM, 0);
    M = MatrixType::Zero(0, 0);
    MatrixType yHistory = MatrixType::Zero(DIM, 0);
    MatrixType sHistory = MatrixType::Zero(DIM, 0);
    TVector x = x0, g = x0;
    Scalar f = problem.value(x);
  problem.gradient(x, g);
    // conv. crit.
    auto noConvergence =
    [&](TVector &x, TVector &g)->bool {
      return (((x - g).cwiseMax(problem.lowerBound()).cwiseMin(problem.upperBound()) - x).template lpNorm<Eigen::Infinity>() >= 1e-4);
    };
    this->m_current.reset();
    this->m_status = Status::Continue;
    while (problem.callback(this->m_current, x) && noConvergence(x, g) && (this->m_status == Status::Continue)) {
      Scalar f_old = f;
      TVector x_old = x;
    TVector g_old = g;
      // STEP 2: compute the cauchy point
      TVector CauchyPoint = TVector::Zero(DIM);
      VariableTVector c = VariableTVector::Zero(W.cols());
    getGeneralizedCauchyPoint(problem, x, g, CauchyPoint, c);
      // STEP 3: compute a search direction d_k by the primal method for the sub-problem
      TVector SubspaceMin;
    SubspaceMinimization(problem, CauchyPoint, x, c, g, SubspaceMin);
      // STEP 4: perform linesearch and STEP 5: compute gradient
      Scalar alpha_init = 1.0;
      const Scalar rate = MoreThuente<TProblem, 1>::linesearch(x,  SubspaceMin-x ,  problem, alpha_init);
      // update current guess and function information
      x = x - rate*(x-SubspaceMin);
      f = problem.value(x);
      problem.gradient(x, g);
      // prepare for next iteration
      TVector newY = g - g_old;
      TVector newS = x - x_old;
      // STEP 6:
      Scalar test = newS.dot(newY);
      test = (test < 0) ? -1.0 * test : test;
      if (test > 1e-7 * newY.squaredNorm()) {
        if (yHistory.cols() < m_historySize) {
          yHistory.conservativeResize(DIM, yHistory.cols() + 1);
          sHistory.conservativeResize(DIM, sHistory.cols() + 1);
        } else {
          yHistory.leftCols(m_historySize - 1) = yHistory.rightCols(m_historySize - 1).eval();
          sHistory.leftCols(m_historySize - 1) = sHistory.rightCols(m_historySize - 1).eval();
        }
        yHistory.rightCols(1) = newY;
        sHistory.rightCols(1) = newS;
    // STEP 7:
        theta = (Scalar)(newY.transpose() * newY) / (newY.transpose() * newS);
        W = MatrixType::Zero(yHistory.rows(), yHistory.cols() + sHistory.cols());
        W << yHistory, (theta * sHistory);
        MatrixType A = sHistory.transpose() * yHistory;
        MatrixType L = A.template triangularView<Eigen::StrictlyLower>();
        MatrixType MM(A.rows() + L.rows(), A.rows() + L.cols());
        MatrixType D = -1 * A.diagonal().asDiagonal();
        MM << D, L.transpose(), L, ((sHistory.transpose() * sHistory) * theta);
        M = MM.inverse();
      }
      if (fabs(f_old - f) < 1e-8) {
        // successive function values too similar
        break;
      }
      ++this->m_current.iterations;
      this->m_current.gradNorm = g.norm();
      this->m_status = checkConvergence(this->m_stop, this->m_current);
    }
    x0 = x;
    if (this->m_debug > DebugLevel::None) {
        std::cout << "Stop status was: " << this->m_status << std::endl;
        std::cout << "Stop criteria were: " << std::endl << this->m_stop << std::endl;
        std::cout << "Current values are: " << std::endl << this->m_current << std::endl;
    }
  }
};
}
/* namespace cppoptlib */
#endif /* LBFGSBSOLVER_H_ */