File: neldermeadsolver.h

package info (click to toggle)
cppnumericalsolvers 1.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 372 kB
  • sloc: cpp: 2,694; python: 236; sh: 20; makefile: 10
file content (224 lines) | stat: -rw-r--r-- 7,174 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// CppNumericalSolver
#ifndef NELDERMEADSOLVER_H_
#define NELDERMEADSOLVER_H_
#include <cmath>
#include <Eigen/Core>
#include "isolver.h"
#include "../meta.h"

namespace cppoptlib {

template<typename ProblemType>
class NelderMeadSolver : public ISolver<ProblemType, 0> {
 public:
  using Superclass = ISolver<ProblemType, 0>;
  using typename Superclass::Scalar;
  using typename Superclass::TVector;
  using MatrixType = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
  MatrixType x0;
  SimplexOp lastOp = SimplexOp::Place;
  Status stop_condition;
  bool initialSimplexCreated = false;

  MatrixType makeInitialSimplex(TVector &x) {
    size_t DIM = x.rows();

    MatrixType s = MatrixType::Zero(DIM, DIM + 1);
    for (int c = 0; c < int(DIM) + 1; ++c) {
      for (int r = 0; r < int(DIM); ++r) {
        s(r, c) = x(r);
        if (r == c - 1) {
          if (x(r) == 0) {
            s(r, c) = 0.00025;
          }
          s(r, c) = (1 + 0.05) * x(r);
        }
      }
    }

    return s;
  }

  /**
   * @brief minimize
   * @details [long description]
   *
   * @param objFunc [description]
   */
  void minimize(ProblemType &objFunc, TVector &x) {

    const Scalar rho = 1.;    // rho > 0
    const Scalar xi  = 2.;    // xi  > max(rho, 1)
    const Scalar gam = 0.5;   // 0 < gam < 1

    const size_t DIM = x.rows();

    // create initial simplex
    if (not initialSimplexCreated) {
      x0 = makeInitialSimplex(x);
    }

    // compute function values
    std::vector<Scalar> f; f.resize(DIM + 1);
    std::vector<int> index; index.resize(DIM + 1);
    for (int i = 0; i < int(DIM) + 1; ++i) {
      f[i] = objFunc(static_cast<TVector >(x0.col(i)));
      index[i] = i;
    }

    sort(index.begin(), index.end(), [&](int a, int b)-> bool { return f[a] < f[b]; });

    int iter = 0;
    const int maxIter = this->m_stop.iterations * DIM;
    while (
      objFunc.callback(this->m_current, x0.col(index[0])) and
      (iter < maxIter)
    ) {
      // conv-check
      Scalar max1 = fabs(f[index[1]] - f[index[0]]);
      Scalar max2 = (x0.col(index[1]) - x0.col(index[0]) ).array().abs().maxCoeff();
      for (int i = 2; i < int(DIM) + 1; ++i) {
        Scalar tmp1 = fabs(f[index[i]] - f[index[0]]);
        if (tmp1 > max1)
          max1 = tmp1;

        Scalar tmp2 = (x0.col(index[i]) - x0.col(index[0]) ).array().abs().maxCoeff();
        if (tmp2 > max2)
          max2 = tmp2;
      }
      const Scalar tt1 = std::max(Scalar(1.e-04), 10 * std::nextafter(f[index[0]], std::numeric_limits<Scalar>::epsilon()) - f[index[0]]);
      const Scalar tt2 = std::max(Scalar(1.e-04), 10 * (std::nextafter(x0.col(index[0]).maxCoeff(), std::numeric_limits<Scalar>::epsilon())
                    - x0.col(index[0]).maxCoeff()));

      // User-defined stopping criteria
      this->m_current.iterations = iter;
      this->m_current.fDelta = max1;
      this->m_current.xDelta = max2;
      stop_condition = checkConvergence(this->m_stop, this->m_current);
      if (this->m_stop.iterations != 0 and stop_condition != Status::Continue) {
        break;
      }

      // Allow stopping in the callback. This callback gets the correct current
      // state unlike the simple one in while(), which get previous state.
      if (objFunc.detailed_callback(this->m_current, lastOp, index[0], x0, f) == false) {
        stop_condition = Status::UserDefined;
        break;
      }

      // max(||x - shift(x) ||_inf ) <= tol,
      if (max1 <=  tt1) {
        // values to similar
        if (max2 <= tt2) {
          stop_condition = Status::FDeltaTolerance;
          break;
        }
      }

      //////////////////////////

      // midpoint of the simplex opposite the worst point
      TVector x_bar = TVector::Zero(DIM);
      for (int i = 0; i < int(DIM); ++i) {
        x_bar += x0.col(index[i]);
      }
      x_bar /= Scalar(DIM);

      // Compute the reflection point
      const TVector x_r   = ( 1. + rho ) * x_bar - rho   * x0.col(index[DIM]);
      const Scalar f_r = objFunc(x_r);
      lastOp = SimplexOp::Reflect;

      if (f_r < f[index[0]]) {
        // the expansion point
        const TVector x_e = ( 1. + rho * xi ) * x_bar - rho * xi   * x0.col(index[DIM]);
        const Scalar f_e = objFunc(x_e);
        if ( f_e < f_r ) {
          // expand
          lastOp = SimplexOp::Expand;
          x0.col(index[DIM]) = x_e;
          f[index[DIM]] = f_e;
        } else {
          // reflect
          lastOp = SimplexOp::Reflect;
          x0.col(index[DIM]) = x_r;
          f[index[DIM]] = f_r;
        }
      } else {
        if ( f_r < f[index[DIM]] ) {
          x0.col(index[DIM]) = x_r;
          f[index[DIM]] = f_r;
        } else {
          // contraction
          if (f_r < f[index[DIM]]) {
            const TVector x_c = (1 + rho * gam) * x_bar - rho * gam * x0.col(index[DIM]);
            const Scalar f_c = objFunc(x_c);
            if ( f_c <= f_r ) {
              // outside
              x0.col(index[DIM]) = x_c;
              f[index[DIM]] = f_c;
              lastOp = SimplexOp::ContractOut;
            } else {
              shrink(x0, index, f, objFunc);
              lastOp = SimplexOp::Shrink;
            }
          } else {
            // inside
            const TVector x_c = ( 1 - gam ) * x_bar + gam   * x0.col(index[DIM]);
            const Scalar f_c = objFunc(x_c);
            if (f_c < f[index[DIM]]) {
              x0.col(index[DIM]) = x_c;
              f[index[DIM]] = f_c;
              lastOp = SimplexOp::ContractIn;
            } else {
              shrink(x0, index, f, objFunc);
              lastOp = SimplexOp::Shrink;
            }
          }
        }
      }
      sort(index.begin(), index.end(), [&](int a, int b)-> bool { return f[a] < f[b]; });
      iter++;
      if (iter >= maxIter) {
        stop_condition = Status::IterationLimit;
      }
      else {
        stop_condition = Status::UserDefined; // if stopped in the callback in while()
      }
    } // while loop

    // report the last result
    objFunc.detailed_callback(this->m_current, lastOp, index[0], x0, f);
    x = x0.col(index[0]);
  }

  void shrink(MatrixType &x, std::vector<int> &index, std::vector<Scalar> &f, ProblemType &objFunc) {
    const Scalar sig = 0.5;   // 0 < sig < 1
    const int DIM = x.rows();
    f[index[0]] = objFunc(x.col(index[0]));
    for (int i = 1; i < DIM + 1; ++i) {
      x.col(index[i]) = sig * x.col(index[i]) + (1. - sig) * x.col(index[0]);
      f[index[i]] = objFunc(x.col(index[i]));
    }
  }

  // Need our own checker here to get rid of the gradient test used in other solvers
  template<typename T>
  Status checkConvergence(const Criteria<T> &stop, const Criteria<T> &current) {
    if ((stop.iterations > 0) && (current.iterations > stop.iterations)) {
      return Status::IterationLimit;
    }
    if ((stop.xDelta > 0) && (current.xDelta < stop.xDelta)) {
      return Status::XDeltaTolerance;
    }
    if ((stop.fDelta > 0) && (current.fDelta < stop.fDelta)) {
      return Status::FDeltaTolerance;
    }
    return Status::Continue;
  }

}; /* class NelderMeadSolver */

} /* namespace cppoptlib */

#endif /* NELDERMEADSOLVER_H_ */