1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/* Copyright (C) 2015 Povilas Kanapickas <povilas@radix.lt>
This file is part of cppreference-doc
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative
Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
*/
#ifndef CPPREFERENCE_FUNCTIONAL_H
#define CPPREFERENCE_FUNCTIONAL_H
namespace std {
#if CPPREFERENCE_STDVER >= 2011
template<class R, class... Args>
class function<R(Args...)> {
public:
typedef R result_type;
function();
function(std::nullptr_t);
function(const function& other);
function(function&& other);
template<class F >
function(F f);
template<class Alloc >
function(std::allocator_arg_t, const Alloc& alloc);
template<class Alloc >
function(std::allocator_arg_t, const Alloc& alloc,
std::nullptr_t);
template<class Alloc >
function(std::allocator_arg_t, const Alloc& alloc,
const function& other);
template<class Alloc >
function(std::allocator_arg_t, const Alloc& alloc,
function&& other);
template<class F, class Alloc >
function(std::allocator_arg_t, const Alloc& alloc, F f);
~function();
function& operator=(const function& other);
function& operator=(function&& other);
function& operator=(std::nullptr_t);
template<class F >
function& operator=(F&& f);
template<class F >
function& operator=(std::reference_wrapper<F> f);
void swap(function& other);
template<class F, class Alloc >
void assign(F&& f, const Alloc& alloc);
explicit operator bool() const;
R operator()(ArgTypes... args) const;
const std::type_info& target_type() const;
template<class T >
T* target();
template<class T >
const T* target() const;
};
template<class R, class... Args>
void swap(function<R(Args...)>& lhs, function<R(Args...)>& rhs);
template<class R, class... ArgTypes >
bool operator==(const std::function<R(ArgTypes...)>& f, std::nullptr_t);
template<class R, class... ArgTypes >
bool operator==(std::nullptr_t, const std::function<R(ArgTypes...)>& f);
template<class R, class... ArgTypes >
bool operator!=(const std::function<R(ArgTypes...)>& f, std::nullptr_t);
template<class R, class... ArgTypes >
bool operator!=(std::nullptr_t, const std::function<R(ArgTypes...)>& f);
class bad_function_call : public std::exception {
public:
bad_function_call();
};
// SIMPLIFIED: actual result is unspecified, std::function<R> is only for
// providing return type
template<class R, class T >
std::function<R> mem_fn(R T::* pm);
template<class F, class... Args >
std::function<R> bind(F&& f, Args&& ... args);
template<class R, class F, class... Args >
std::function<R> bind(F&& f, Args&& ... args);
#if CPPREFERENCE_STDVER >= 2017
template<class F, class... ArgTypes>
std::result_of_t < F&& (ArgTypes&& ...) > invoke(F&& f, ArgTypes&& ... args);
#endif
// SIMPLIFIED: the inherited type is simplified
template<class T >
struct is_bind_expression : std::integral_constant<bool, true> {};
template<class T >
struct is_placeholder : std::integral_constant<bool, true> {};
namespace placeholders { // SIMPLIFIED: the actual type is unspecified
extern int _1;
extern int _2;
extern int _3;
extern int _4;
extern int _5;
extern int _6;
extern int _7;
extern int _8;
extern int _9;
} // namespace placeholders
template<class T>
class reference_wrapper {
public:
typedef T type;
// SIMPLIFIED: actual types are dependent on T
typedef void result_type;
typedef void argument_type;
typedef void first_argument_type;
typedef void second_argument_type;
reference_wrapper(T& x);
reference_wrapper(T&& x) = delete;
reference_wrapper(const reference_wrapper<T>& other);
reference_wrapper& operator=(const reference_wrapper<T>& other);
operator T& () const;
T& get() const;
template<class... ArgTypes >
typename std::result_of < T& (ArgTypes&& ...) >::type
operator()(ArgTypes&& ... args) const; // only if T is function
};
template<class T >
std::reference_wrapper<T> ref(T& t);
template<class T >
std::reference_wrapper<T> ref(std::reference_wrapper<T> t);
template <class T>
void ref(const T&&) = delete;
template<class T >
std::reference_wrapper<const T> cref(const T& t);
template<class T >
std::reference_wrapper<const T> cref(std::reference_wrapper<T> t);
template <class T>
void cref(const T&&) = delete;
#endif // CPPREFERENCE_STDVER >= 2011
template<class T = void>
struct plus {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct minus {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct multiplies {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct divides {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct modulus {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct negate {
typedef T result_type;
typedef T argument_type;
T operator()(const T& arg) const;
};
template<class T = void>
struct equal_to {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct not_equal_to {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct greater {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct less {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct greater_equal {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct less_equal {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct logical_and {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct logical_or {
typedef bool result_type;
typedef T first_argument_type;
typedef T second_argument_type;
bool operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct logical_not {
typedef bool result_type;
typedef T argument_type;
bool operator()(const T& arg) const;
};
template<class T = void>
struct bit_and {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct bit_or {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct bit_xor {
typedef T result_type;
typedef T first_argument_type;
typedef T second_argument_type;
T operator()(const T& lhs, const T& rhs) const;
};
template<class T = void>
struct bit_not {
typedef T result_type;
typedef T argument_type;
T operator()(const T& arg) const;
};
template<class Predicate >
struct unary_negate {
typedef bool result_type;
typedef typename Predicate::argument_type argument_type;
explicit unary_negate(const Predicate& pred);
result_type operator()(argument_type const& x) const;
};
template<class Predicate >
struct binary_negate {
typedef bool result_type;
typedef typename Predicate::first_argument_type first_argument_type;
typedef typename Predicate::second_argument_type second_argument_type;
explicit binary_negate(const Predicate& pred);
result_type operator()(const T& lhs, const T& rhs) const;
};
template<class Predicate >
std::unary_negate<Predicate> not1(const Predicate& pred);
template<class Predicate >
std::binary_negate<Predicate> not2(const Predicate& pred);
#if CPPREFERENCE_STDVER >= 2011
template<class Key >
struct hash {
typedef Key argument_type;
typedef std::size_t result_type;
std::size_t operator()(const Key& key) const;
};
#endif
} // namespace std
#endif // CPPREFERENCE_FUNCTIONAL_H
|