1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#!/usr/bin/env python
# Copyright (C) 2011, 2012 Povilas Kanapickas <povilas@radix.lt>
#
# This file is part of cppreference-doc
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
import matplotlib.pyplot as plt
import os
from numpy import *
from bisect import *
#
# DATA - array of items describing data to plot
# Each item consists of the following parts
#
# 1 : string : name of the function
# 2 : array of 4 items : xmin, xmax, ymin, ymax
# 3 : array of N items : X coordinates for the N points to plot.
# Points outside [xmin, xmax] won't be plotted
# 4 : array of N items : Y coordinates for the N points to plot.
# Points outside [ymin, ymax] won't be plotted
# 5 : array of M items : Points where the function is discontinuous.
# Each of the items contains 6 elements:
# * x,y of the beginning of the discontinuity region
# * 'T' or 'F' depending on whether the function has
# a real value at that point
# * x,y of the end of the discontinuity region
# * 'T' or 'F' depending on whether the function has
# a real value at that point
#
DATA = (
( 'floor',
( -3.5, 3.5, -3.5, 3.5 ),
arange(-4, 4, 0.02),
floor(arange(-4, 4, 0.02)),
( (-3, -4, 'F', -3, -3, 'T'),
(-2, -3, 'F', -2, -2, 'T'),
(-1, -2, 'F', -1, -1, 'T'),
( 0, -1, 'F', 0, 0, 'T'),
( 1, 0, 'F', 1, 1, 'T'),
( 2, 1, 'F', 2, 2, 'T'),
( 3, 2, 'F', 3, 3, 'T')
)
),
( 'ceil',
( -3.5, 3.5, -3.5, 3.5 ),
arange(-4, 4, 0.02),
ceil(arange(-4, 4, 0.02)),
( (-3, -3, 'T', -3, -2, 'F'),
(-2, -2, 'T', -2, -1, 'F'),
(-1, -1, 'T', -1, 0, 'F'),
( 0, 0, 'T', 0, 1, 'F'),
( 1, 1, 'T', 1, 2, 'F'),
( 2, 2, 'T', 2, 3, 'F'),
( 3, 3, 'T', 3, 4, 'F')
)
),
( 'trunc',
( -3.5, 3.5, -3.5, 3.5 ),
arange(-4, 4, 0.02),
trunc(arange(-4, 4, 0.02)),
( (-3, -3, 'T', -3, -2, 'F'),
(-2, -2, 'T', -2, -1, 'F'),
(-1, -1, 'T', -1, 0, 'F'),
( 1, 0, 'F', 1, 1, 'T'),
( 2, 1, 'F', 2, 2, 'T'),
( 3, 2, 'F', 3, 3, 'T'),
)
),
( 'round_away_zero',
( -3.5, 3.5, -3.5, 3.5 ),
arange(-4, 4, 0.02),
around(arange(-4, 4, 0.02)),
( (-3.5, -4, 'T', -3.5, -3, 'F'),
(-2.5, -3, 'T', -2.5, -2, 'F'),
(-1.5, -2, 'T', -1.5, -1, 'F'),
(-0.5, -1, 'T', -0.5, 0, 'F'),
( 0.5, 0, 'F', 0.5, 1, 'T'),
( 1.5, 1, 'F', 1.5, 2, 'T'),
( 2.5, 2, 'F', 2.5, 3, 'T'),
( 3.5, 3, 'F', 3.5, 4, 'T')
)
),
( 'sin',
( -6.3, 6.3, -1, 1),
arange(-6.3, 6.3, 0.02),
sin(arange(-6.3, 6.3, 0.02)),
()
),
( 'cos',
( -6.3, 6.3, -1, 1),
arange(-6.3, 6.3, 0.02),
cos(arange(-6.3, 6.3, 0.02)),
()
),
( 'tan',
( -6.3, 6.3, -4, 4),
arange(-6.3, 6.3, 0.02),
tan(arange(-6.3, 6.3, 0.02)),
( ( -4.72, 100, 'F', -4.70, -100, 'F'),
( -1.59, 100, 'F', -1.57, -100, 'F'),
( 1.57, 100, 'F', 1.59, -100, 'F'),
( 4.70, 100, 'F', 4.72, -100, 'F')
)
)
)
font = {'family' : 'DejaVu Sans',
'weight' : 'normal',
'size' : 9}
plt.rc('font', **font)
for i in xrange(len(DATA)):
(name,lim,xdata,ydata,discont) = DATA[i]
#make a single array from the data
data = list()
for j in xrange(len(xdata)):
data.append({'type' : 'c', 'x' : xdata[j], 'y' : ydata[j]})
data.sort(key = lambda it: it['x'])
for j in xrange(len(discont)):
(x1,y1,t1, x2,y2,t2) = discont[j]
data_x = [i['x'] for i in data]
imin = bisect_left(data_x, x1)
imax = bisect_right(data_x, x2)
del data[imin:imax]
data.insert(imin, {'type' : 'dend', 'x': x2, 'y' : y2, 't': t2 })
data.insert(imin, {'type' : 'dbeg', 'x': x1, 'y' : y1, 't': t1 })
# make fig
fig = plt.figure(figsize=(200.0/72.0,200.0/72.0))
ax = fig.add_subplot(111)
(xmin,xmax,ymin,ymax) = lim
ax.set_xlim((xmin, xmax))
ax.set_ylim((ymin, ymax))
# functions for range checking
def c_in_lim(cx, cy, px, py):
if cx < xmin and px < xmin:
return False
if cx > xmax and px > xmax:
return False
if cy < ymin and py < ymin:
return False
if cy > ymax and py > ymax:
return False
return True
def d_in_lim(x, y):
if x < xmin - (xmax-xmin)*0.03:
return False
if x > xmax + (xmax-xmin)*0.03:
return False
if y < ymin - (ymax-ymin)*0.03:
return False
if y > ymax + (ymax-ymin)*0.03:
return False
return True
# paint lines
# the lines are painted in batches
paint_batch = list()
for j in xrange(1, len(data)):
prev_t = data[j-1]['type']
curr_t = data[j]['type']
prev_x = data[j-1]['x']
curr_x = data[j]['x']
prev_y = data[j-1]['y']
curr_y = data[j]['y']
is_good = True #whether current segment needs painting
# don't paint out of bounds
if curr_t == 'c':
if not c_in_lim(curr_x, curr_y, prev_x, prev_y):
is_good = False
else:
if not d_in_lim(curr_x, curr_y):
is_good = False
# don't paint within discontinuous region
if (curr_t == 'dend' and prev_t == 'dbeg'):
is_good = False
# append an item to batch if needed
if is_good:
if len(paint_batch) == 0:
paint_batch.append((prev_x, prev_y))
paint_batch.append((curr_x, curr_y))
# we need painting if this is the last data point
if j == len(data) - 1:
is_good = False
# paint the current batch, if any
if (not is_good) and len(paint_batch) > 1:
# merge adjacent segments if they have the same direction
def compute_dir(n):
(x1,y1) = paint_batch[n]
(x2,y2) = paint_batch[n+1]
return (y2-y1)/(x2-x1)
prev_dir = compute_dir(0)
k = 1
while k < len(paint_batch) - 1:
curr_dir = compute_dir(k)
if curr_dir == prev_dir:
del paint_batch[k]
else:
prev_dir = curr_dir
k += 1
# paint
(x,y) = zip(*paint_batch)
l = ax.plot(x, y)
plt.setp(l, 'color', '#0000FF')
plt.setp(l, 'linewidth', 0.5)
paint_batch = []
# paint markers
for j in xrange(0, len(data)):
curr_t = data[j]['type']
curr_x = data[j]['x']
curr_y = data[j]['y']
# paint point marking discontinuous region if needed
if curr_t != 'c':
if not d_in_lim(curr_x, curr_y):
continue
fill = data[j]['t']
l = ax.plot(curr_x, curr_y, marker='o')
plt.setp(l, 'markersize', 7.5)
plt.setp(l, 'markeredgewidth', 0.5)
plt.setp(l, 'markeredgecolor', '#0000FF')
if fill == 'T':
plt.setp(l, 'markerfacecolor', '#0000FF')
else:
plt.setp(l, 'markerfacecolor', 'white')
ax.grid(True)
ax.set_axisbelow(True)
ax.tick_params(pad = 7.5)
ax.set_aspect((xmax-xmin)/(ymax-ymin)) # always produce square plots
outfile = 'output/math-' + name + '.svg'
tmpfile = outfile + '.tmp'
plt.savefig(tmpfile, format='svg')
os.system('xsltproc --novalid fix_svg-math.xsl ' + tmpfile + ' > ' + outfile)
os.system('rm ' + tmpfile)
plt.close()
|