1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
#include <catch2/catch.hpp>
#include <zmq_addon.hpp>
#ifdef ZMQ_CPP11
TEST_CASE("multipart codec empty", "[codec_multipart]")
{
using namespace zmq;
multipart_t mmsg;
message_t msg = mmsg.encode();
CHECK(msg.size() == 0);
multipart_t mmsg2;
mmsg2.decode_append(msg);
CHECK(mmsg2.size() == 0);
}
TEST_CASE("multipart codec small", "[codec_multipart]")
{
using namespace zmq;
multipart_t mmsg;
mmsg.addstr("Hello World");
message_t msg = mmsg.encode();
CHECK(msg.size() == 1 + 11); // small size packing
mmsg.addstr("Second frame");
msg = mmsg.encode();
CHECK(msg.size() == 1 + 11 + 1 + 12);
multipart_t mmsg2;
mmsg2.decode_append(msg);
CHECK(mmsg2.size() == 2);
std::string part0 = mmsg2[0].to_string();
CHECK(part0 == "Hello World");
CHECK(mmsg2[1].to_string() == "Second frame");
}
TEST_CASE("multipart codec big", "[codec_multipart]")
{
using namespace zmq;
message_t big(495); // large size packing
big.data<char>()[0] = 'X';
multipart_t mmsg;
mmsg.pushmem(big.data(), big.size());
message_t msg = mmsg.encode();
CHECK(msg.size() == 5 + 495);
CHECK(msg.data<unsigned char>()[0] == std::numeric_limits<uint8_t>::max());
CHECK(msg.data<unsigned char>()[5] == 'X');
CHECK(mmsg.size() == 1);
mmsg.decode_append(msg);
CHECK(mmsg.size() == 2);
CHECK(mmsg[0].data<char>()[0] == 'X');
}
TEST_CASE("multipart codec decode bad data overflow", "[codec_multipart]")
{
using namespace zmq;
char bad_data[3] = {5, 'h', 'i'};
message_t wrong_size(bad_data, 3);
CHECK(wrong_size.size() == 3);
CHECK(wrong_size.data<char>()[0] == 5);
CHECK_THROWS_AS(
multipart_t::decode(wrong_size),
std::out_of_range);
}
TEST_CASE("multipart codec decode bad data extra data", "[codec_multipart]")
{
using namespace zmq;
char bad_data[3] = {1, 'h', 'i'};
message_t wrong_size(bad_data, 3);
CHECK(wrong_size.size() == 3);
CHECK(wrong_size.data<char>()[0] == 1);
CHECK_THROWS_AS(
multipart_t::decode(wrong_size),
std::out_of_range);
}
// After exercising it, this test is disabled over concern of running
// on hosts which lack enough free memory to allow the absurdly large
// message part to be allocated.
#if 0
TEST_CASE("multipart codec encode too big", "[codec_multipart]")
{
using namespace zmq;
const size_t too_big_size = 1L + std::numeric_limits<uint32_t>::max();
CHECK(too_big_size > std::numeric_limits<uint32_t>::max());
char* too_big_data = new char[too_big_size];
multipart_t mmsg(too_big_data, too_big_size);
delete [] too_big_data;
CHECK(mmsg.size() == 1);
CHECK(mmsg[0].size() > std::numeric_limits<uint32_t>::max());
CHECK_THROWS_AS(
mmsg.encode(),
std::range_error);
}
#endif
TEST_CASE("multipart codec free function with vector of message_t", "[codec_multipart]")
{
using namespace zmq;
std::vector<message_t> parts;
parts.emplace_back("Hello", 5);
parts.emplace_back("World",5);
auto msg = encode(parts);
CHECK(msg.size() == 1 + 5 + 1 + 5 );
CHECK(msg.data<unsigned char>()[0] == 5);
CHECK(msg.data<unsigned char>()[1] == 'H');
CHECK(msg.data<unsigned char>()[6] == 5);
CHECK(msg.data<unsigned char>()[7] == 'W');
std::vector<message_t> parts2;
decode(msg, std::back_inserter(parts2));
CHECK(parts.size() == 2);
CHECK(parts[0].size() == 5);
CHECK(parts[1].size() == 5);
}
TEST_CASE("multipart codec free function with vector of const_buffer", "[codec_multipart]")
{
using namespace zmq;
std::vector<const_buffer> parts;
parts.emplace_back("Hello", 5);
parts.emplace_back("World",5);
auto msg = encode(parts);
CHECK(msg.size() == 1 + 5 + 1 + 5 );
CHECK(msg.data<unsigned char>()[0] == 5);
CHECK(msg.data<unsigned char>()[1] == 'H');
CHECK(msg.data<unsigned char>()[6] == 5);
CHECK(msg.data<unsigned char>()[7] == 'W');
std::vector<message_t> parts2;
decode(msg, std::back_inserter(parts2));
CHECK(parts.size() == 2);
CHECK(parts[0].size() == 5);
CHECK(parts[1].size() == 5);
}
TEST_CASE("multipart codec free function with vector of mutable_buffer", "[codec_multipart]")
{
using namespace zmq;
std::vector<mutable_buffer> parts;
char hello[6] = "Hello";
parts.emplace_back(hello, 5);
char world[6] = "World";
parts.emplace_back(world,5);
auto msg = encode(parts);
CHECK(msg.size() == 1 + 5 + 1 + 5 );
CHECK(msg.data<unsigned char>()[0] == 5);
CHECK(msg.data<unsigned char>()[1] == 'H');
CHECK(msg.data<unsigned char>()[6] == 5);
CHECK(msg.data<unsigned char>()[7] == 'W');
std::vector<message_t> parts2;
decode(msg, std::back_inserter(parts2));
CHECK(parts.size() == 2);
CHECK(parts[0].size() == 5);
CHECK(parts[1].size() == 5);
}
TEST_CASE("multipart codec free function with multipart_t", "[codec_multipart]")
{
using namespace zmq;
multipart_t mmsg;
mmsg.addstr("Hello");
mmsg.addstr("World");
auto msg = encode(mmsg);
CHECK(msg.size() == 1 + 5 + 1 + 5);
CHECK(msg.data<unsigned char>()[0] == 5);
CHECK(msg.data<unsigned char>()[1] == 'H');
CHECK(msg.data<unsigned char>()[6] == 5);
CHECK(msg.data<unsigned char>()[7] == 'W');
multipart_t mmsg2;
decode(msg, std::back_inserter(mmsg2));
CHECK(mmsg2.size() == 2);
CHECK(mmsg2[0].size() == 5);
CHECK(mmsg2[1].size() == 5);
}
TEST_CASE("multipart codec static method decode to multipart_t", "[codec_multipart]")
{
using namespace zmq;
multipart_t mmsg;
mmsg.addstr("Hello");
mmsg.addstr("World");
auto msg = encode(mmsg);
auto mmsg2 = multipart_t::decode(msg);
CHECK(mmsg2.size() == 2);
CHECK(mmsg2[0].size() == 5);
CHECK(mmsg2[1].size() == 5);
}
#endif
|