1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
<html>
<head>
<title>README CQRlib -- API for Quaternion Rotations</title>
</head>
<body bgcolor="FFFFFF">
<font face="Arial,Helevtica,Times" size=4>
<a href="http://sourceforge.net/projects/cqrlib"><img src="http://sflogo.sourceforge.net/sflogo.php?group_id=268743&type=13" width="120" height="30" alt="Get CQRlib at SourceForge.net. Fast, secure and Free Open Source software downloads" /></a><hr>
<h3 align="center">CQRlib -- ANSI C API for Quaternion Rotations</h3>
<P>
<center>
Release 1.1.4<br />
29 Apr 2018<br />
© 2008, 2009, 2010, 2014, 2018 Herbert J. Bernstein<br/>
<script language="javascript" type="text/javascript">
<!--
var name = "yayahjb";
var domain = "gmail";
var domext = "com";
document.write ("<a href=\"mailto:" + name + "@" + domain + "." + domext + "\"style=\"text-decoration:none\">" + name + " <b>at</b> " + domain + " <b>dot</b> " + domext+"</a>");
// -->
</script>
<noscript>
yayahjb <b>at</b> gmail <b>dot</b> com
</noscript><br />
You may distribute the CQRlib API under the <a href=lgpl.txt style="text-decoration:none">LGPL</a><br />
</center>
<P>
The 1.1.4 release is a documentation change to reflect a move of the source to github.
The 1.1.3 release parenthesized uses of *this that caused errors from OSX clang.
Thanks to Zack Settel for reporting the problem.
The 1.1.2 release improved the portability of the code for Visual Studio.
The 1.1.1 release relaxed some of the test constraints and parametrized the tests against DBL_EPSILON
and added the Dist and Distsq functions.
The 1.1 release added functions for log, exp, power and root, added a macro form of the
norm and fixed the macro for inverse.
The 1.0.6 release fixed an error in the CQRHLERPDist definition and comments.
The 1.0.5 release added SLERP/HLERP support in C++ and C, moved from the <a
href=http://sf.net/projects/vector>vector</a> project.
The 1.0.4 release added a version of L. Andrews adaptation to a C++ template.
The 1.0.3 release changed from use of a FAR macro to use of a CQR_FAR macro to avoid name conflicts.
the macros for malloc, free, memmove and memset were also changed.
The 1.0.2 release of 14 June 2009 corrected the Makefile for case-sensitive file systems and to include -lm in loading.
Release 1.0.1 of 23 February 2009 was a minor documentation update to the original 1.0 release of 22 February 2009.
<p>
CQRlib is an ANSI C implementation of a utility library for quaternion arithmetic and
quaternion rotation math. See
<ul>
<li>"Quaternions and spatial rotation", Wikipedia
<a href="http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation">http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation</a>
<li> K. Shoemake, "Quaternions", Department of Computer Science,
University of Pennsylvania, Philadelphia, PA 19104,
<a href="ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z">ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z</a>
<li>K. Shoemake, "Animating rotation with quaternion curves",
ACM SIGGRAPH Computer Graphics, Vol 19, No. 3, pp 245--254,
1985.
</ul>
<p>
Work supported in part by NIH NIGMS under grant 1R15GM078077-01 and DOE under grant ER63601-1021466-0009501.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
<p>
<h4>Installation</h4>
<P>
The CQRlib package is available at <a href="https://github.com/yayahjb/cqrlib.git">https://github.com/yayahjb/cqrlib.git</a>.
A source zip file is available at
<a href="https://github.com/yayahjb/cqrlib/archive/master.zip">https://github.com/yayahjb/cqrlib/archive/master.zip</a>
<P>
When the source is downloaded and unpacked, you should have a directory cqrlib or master. To build you may need to
install the libtool-bin package. To see the
current settings for a build execute
<p>
make
</p>
which should give the following information:
<p>
<pre><tt>
PLEASE READ README_CQRlib.txt and lgpl.txt
Before making the CQRlib library and example programs, check
that the chosen settings are correct
The current C and C++ compile commands are:
libtool --mode=compile gcc -g -O2 -Wall -ansi -pedantic -I. -c
libtool --mode=compile g++ -g -O2 -Wall -ansi -pedantic -DCQR_NOCCODE=1 -I. -c
The current library C and C++ link commands are:
libtool --mode=link gcc -version-info 3:0:1 -rpath /home/yaya/lib
libtool --mode=link g++ -version-info 3:0:1 -rpath /home/yaya/lib
The current C library local, dynamic and static build commands are:
libtool --mode=link gcc -g -O2 -Wall -ansi -pedantic -I.
libtool --mode=link gcc -g -O2 -Wall -ansi -pedantic -dynamic -I /home/yaya/include -L/home/yaya/lib
libtool --mode=link gcc -g -O2 -Wall -ansi -pedantic -static -I /home/yaya/include -L/home/yaya/lib
The current C++ template local, dynamic and static build commands are:
libtool --mode=link g++ -g -O2 -Wall -ansi -pedantic -DCQR_NOCCODE=1 -I.
libtool --mode=link g++ -g -O2 -Wall -ansi -pedantic -DCQR_NOCCODE=1 -dynamic -I /home/yaya/include -L/home/yaya/lib
libtool --mode=link g++ -g -O2 -Wall -ansi -pedantic -DCQR_NOCCODE=1 -static -I /home/yaya/include -L/home/yaya/lib
Before installing the CQRlib library and example programs, check
that the install directory and install commands are correct:
The current values are :
/home/yaya
libtool --mode=install cp
To compile the CQRlib library and example programs type:
make clean
make all
To run a set of tests type:
make tests
To clean up the directories type:
make clean
To install the library and binaries type:
make install
</tt>
</pre>
<p>
If these settings need to be changed, edit Makefile. On some systems, e.g. Mac OS X, the default
libtool is not appropriate. In that case you should install a recent version of libtool. The
CQRlib kit has been tested with libtool versions 1.3.5, 1.5.4 and 2.4.6. If the system libtool is
not to be used, define the variable LIBTOOL to be the path to the libtool executable, e.g.
in bash
<p>
export LIBTOOL=$HOME/bin/libtool
<p>
of in the Makefie
<p>
LIBTOOL = $(HOME)/bin/libtool
<p>
If you need to include local header files using #include "..." instead of #include <...>,
define the variable USE_LOCAL_HEADERS. This definition is forced if _MSC_VER is defined, meaning that
local headers will automatically be used for Visual Studio.
<h4>Synopsis</h4>
<P>
<b>#include <cqrlib.h></b>
<pre>
<tt>
/* CQRCreateQuaternion -- create a quaternion = w +ix+jy+kz */
int CQRCreateQuaternion(CQRQuaternionHandle * quaternion, double w, double x, double y, double z);
/* CQRCreateEmptyQuaternion -- create a quaternion = 0 +i0+j0+k0 */
int CQRCreateEmptyQuaternion(CQRQuaternionHandle * quaternion) ;
/* CQRFreeQuaternion -- free a quaternion */
int CQRFreeQuaternion(CQRQuaternionHandle * quaternion);
/* CQRSetQuaternion -- create an existing quaternion = w +ix+jy+kz */
int CQRSetQuaternion( CQRQuaternionHandle quaternion, double w, double x, double y, double z);
/* CQRGetQuaternionW -- get the w component of a quaternion */
int CQRGetQuaternionW( double CQR_FAR * qw, CQRQuaternionHandle q );
/* CQRGetQuaternionX -- get the x component of a quaternion */
int CQRGetQuaternionX( double CQR_FAR * qx, CQRQuaternionHandle q );
/* CQRGetQuaternionY -- get the y component of a quaternion */
int CQRGetQuaternionY( double CQR_FAR * qy, CQRQuaternionHandle q );
/* CQRGetQuaternionZ -- get the z component of a quaternion */
int CQRGetQuaternionZ( double CQR_FAR * qz, CQRQuaternionHandle q );
/* CQRGetQuaternionIm -- get the imaginary component of a quaternion */
int CQRGetQuaternionIm( CQRQuaternionHandle quaternion, CQRQuaternionHandle q );
/* CQRGetQuaternionAxis -- get the axis for the polar representation of a quaternion */
int CQRGetQuaternionAxis( CQRQuaternionHandle quaternion, CQRQuaternionHandle q );
/* CQRGetQuaternionAngle -- get the angular component of the polar representation
of aquaternion */
int CQRGetQuaternionAngle( double CQR_FAR * angle, CQRQuaternionHandle q );
/* CQRLog -- get the natural logarithm of a quaternion */
int CQRLog( CQRQuaternionHandle quaternion, CQRQuaternionHandle q );
/* CQRExp -- get the exponential (exp) of a quaternion */
int CQRExp( CQRQuaternionHandle quaternion, CQRQuaternionHandle q );
/* CQRQuaternionPower -- take a quarernion to a quaternion power */
int CQRQuaternionPower( CQRQuaternionHandle quaternion, CQRQuaternionHandle q, CQRQuaternionHandle p);
/* CQRDoublePower -- take a quarernion to a double power */
int CQRDoublePower( CQRQuaternionHandle quaternion, CQRQuaternionHandle q, double p);
/* CQRIntegerPower -- take a quaternion to an integer power */
int CQRIntegerPower( CQRQuaternionHandle quaternion, CQRQuaternionHandle q, int p);
/* CQRIntegerRoot -- take the given integer root of a quaternion, returning
the indicated mth choice from among multiple roots.
For reals the cycle runs through first the i-based
roots, then the j-based roots and then the k-based roots,
out of the infinite number of possible roots of reals. */
int CQRIntegerRoot( CQRQuaternionHandle quaternion, CQRQuaternionHandle q, int r, int m);
/* CQRAdd -- add a quaternion (q1) to a quaternion (q2) */
int CQRAdd (CQRQuaternionHandle quaternion, CQRQuaternionHandle q1, CQRQuaternionHandle q2 );
/* CQRSubtract -- subtract a quaternion (q2) from a quaternion (q1) */
int CQRSubtract (CQRQuaternionHandle quaternion, CQRQuaternionHandle q1, CQRQuaternionHandle q2 );
/* CQRMultiply -- multiply a quaternion (q1) by quaternion (q2) */
int CQRMultiply (CQRQuaternionHandle quaternion, CQRQuaternionHandle q1, CQRQuaternionHandle q2 );
/* CQRDot -- dot product of quaternion (q1) by quaternion (q2) as 4-vectors */
int CQRDot (double CQR_FAR * dotprod, CQRQuaternionHandle q1, CQRQuaternionHandle q2 );
/* CQRDivide -- Divide a quaternion (q1) by quaternion (q2) */
int CQRDivide (CQRQuaternionHandle quaternion, CQRQuaternionHandle q1, CQRQuaternionHandle q2 );
/* CQRScalarMultiply -- multiply a quaternion (q) by scalar (s) */
int CQRScalarMultiply (CQRQuaternionHandle quaternion, CQRQuaternionHandle q, double s );
/* CQREqual -- return 0 if quaternion q1 == q2 */
int CQREqual (CQRQuaternionHandle q1, CQRQuaternionHandle q2 );
/* CQRConjugate -- Form the conjugate of a quaternion qconj */
int CQRConjugate (CQRQuaternionHandle qconjugate, CQRQuaternionHandle quaternion);
/* CQRNormsq -- Form the normsquared of a quaternion */
int CQRNormsq (double * normsq, CQRQuaternionHandle quaternion ) ;
/* CQRNorm -- Form the norm of a quaternion */
int CQRNorm (double * norm, CQRQuaternionHandle quaternion ) ;
/* CQRDistsq -- Form the distance squared between two quaternions */
int CQRDistsq (double CQR_FAR * distsq, CQRQuaternionHandle q1, CQRQuaternionHandle q2) ;
/* CQRDist -- Form the distance between two quaternions */
int CQRDist (double CQR_FAR * dist, CQRQuaternionHandle q1, CQRQuaternionHandle q2 ) ;
/* CQRInverse -- Form the inverse of a quaternion */
int CQRInverse (CQRQuaternionHandle inversequaternion, CQRQuaternionHandle quaternion );
/* CQRRotateByQuaternion -- Rotate a vector by a Quaternion, w = qvq* */
int CQRRotateByQuaternion(double * w, CQRQuaternionHandle rotquaternion, double * v);
/* CQRAxis2Quaternion -- Form the quaternion for a rotation around axis v by angle theta */
int CQRAxis2Quaternion (CQRQuaternionHandle rotquaternion, double * v, double theta);
/* CQRMatrix2Quaterion -- Form the quaternion from a 3x3 rotation matrix R */
int CQRMatrix2Quaternion (CQRQuaternionHandle rotquaternion, double R[3][3]);
/* CQRQuaternion2Matrix -- Form the 3x3 rotation matrix from a quaternion */
int CQRQuaternion2Matrix (double R[3][3], CQRQuaternionHandle rotquaternion);
/* CQRQuaternion2Angles -- Convert a Quaternion into Euler Angles for Rz(Ry(Rx))) convention */
int CQRQuaternion2Angles (double * RotX, double * RotY, double * RotZ, CQRQuaternionHandle rotquaternion);
/* CQRAngles2Quaternion -- Convert Euler Angles for Rz(Ry(Rx))) convention into a quaternion */
int CQRAngles2Quaternion (CQRQuaternionHandle rotquaternion, double RotX, double RotY, double RotZ );
/* Represent a 3-vector as a quaternion with w=0 */
int CQRPoint2Quaternion( CQRQuaternionHandle quaternion, double v[3] );
/* SLERP -- Spherical Linear Interpolation */
int CQRSLERP (CQRQuaternionHandle quaternion, const CQRQuaternionHandle q1, const CQRQuaternionHandle q2,
const double w1, const double w2);
/* HLERP -- Hemispherical Linear Interpolation */
int CQRHLERP (CQRQuaternionHandle quaternion, const CQRQuaternionHandle q1, const CQRQuaternionHandle q2,
const double w1, const double w2);
/* CQRSLERPDist -- Spherical Linear Interpolation distance */
int CQRSLERPDist (double CQR_FAR * dist, const CQRQuaternionHandle q1, const CQRQuaternionHandle q2);
/* CQRHLERPDist -- Hemispherical Linear Interpolation distance */
int CQRHLERPDist (double CQR_FAR * dist, const CQRQuaternionHandle q1, const CQRQuaternionHandle q2);
</tt>
</pre>
and for C++
<pre>
<tt>
template< typename DistanceType=double, typename VectorType=double[3], typename MatrixType=double[9] >
class CPPQR
{
public:
/* Constructors */
inline CPPQR( ); // default constructor
inline CPPQR( const CPPQR& q ); // copy constructor
inline CPPQR( const DistanceType& wi, const DistanceType& xi, const DistanceType& yi, const DistanceType& zi );
/* Set -- set the values of an existing quaternion = w +ix+jy+kz */
inline void Set ( const DistanceType& wi, const DistanceType& xi, const DistanceType& yi, const DistanceType& zi );
/* Accessors */
inline DistanceType GetW( void ) const;
inline DistanceType GetX( void ) const;
inline DistanceType GetY( void ) const;
inline DistanceType GetZ( void ) const;
inline CPPQR GetIm( void ) const;
inline CPPQR GetAxis( void ) const;
inline double GetAngle( void ) const;
/* Operators */
inline CPPQR operator+ ( const CPPQR& q ) const;
inline CPPQR& operator+= ( const CPPQR& q );
inline CPPQR& operator-= ( const CPPQR& q );
inline CPPQR operator- ( const CPPQR& q ) const;
inline CPPQR operator* ( const CPPQR& q ) const;
inline CPPQR operator/ ( const CPPQR& q2 ) const;
inline CPPQR operator* ( const DistanceType& d ) const;
inline CPPQR operator/ ( const DistanceType& d ) const;
inline CPPQR Conjugate ( void ) const;
inline CPPQR& operator= ( const CPPQR& q );
inline bool operator== ( const CPPQR& q ) const;
inline bool operator!= ( const CPPQR& q ) const;
inline VectorType& operator* ( const VectorType& v );
DistanceType operator[] ( const int k ) const;
/* Dot -- Dot product of 2 quaternions as 4-vectors */
inline DistanceType Dot( const CPPQR& q) const;
/* Normsq -- Form the normsquared of a quaternion */
inline DistanceType Normsq ( void ) const;
/* Norm -- Form the norm of a quaternion */
inline DistanceType Norm ( void ) const;
/* Distsq -- Form the distance squared from a quaternion */
inline DistanceType Distsq ( const CPPQR& q ) const;
/* Dist -- Form the distance from a quaternion */
inline DistanceType Dist ( const CPPQR& q ) const;
/* Inverse -- Form the inverse of a quaternion */
inline CPPQR Inverse ( void ) const;
/* log -- Get the natural logarithm of a quaternion */
inline CPPQR log( void ) const;
/* exp -- Get the exponential of a quaternion */
inline CPPQR exp( void ) const;
/* pow -- Take a power of a quaternion */
template <typename powertype>
inline CPPQR pow( const powertype p) const;
inline CPPQR pow( const int p) const;
/* root -- Take an integer root of a quaternion */
inline CPPQR root( const int r, const int m) const;
/* RotateByQuaternion -- Rotate a vector by a Quaternion, w = qvq* */
inline void RotateByQuaternion(VectorType &w, const VectorType v );
inline VectorType& RotateByQuaternion( const VectorType v );
/* Axis2Quaternion -- Form the quaternion for a rotation around axis v by angle theta */
static inline CPPQR Axis2Quaternion ( const DistanceType& angle, const VectorType v );
static inline CPPQR Axis2Quaternion ( const VectorType v, const DistanceType& angle );
/* Matrix2Quaterion -- Form the quaternion from a 3x3 rotation matrix R */
static inline void Matrix2Quaternion ( CPPQR& rotquaternion, const MatrixType m );
static inline void Matrix2Quaternion ( CPPQR& rotquaternion, const DistanceType R[3][3] );
/* Quaternion2Matrix -- Form the 3x3 rotation matrix from a quaternion */
static inline void Quaternion2Matrix( MatrixType& m, const CPPQR q );
static inline void Quaternion2Matrix( DistanceType m[3][3], const CPPQR q );
/* Get a unit quaternion from a general one */
inline CPPQR UnitQ( void ) const;
/* Quaternion2Angles -- Convert a Quaternion into Euler Angles for Rz(Ry(Rx))) convention */
inline bool Quaternion2Angles ( DistanceType& rotX, DistanceType& rotY, DistanceType& rotZ ) const;
/* Angles2Quaternion -- Convert Euler Angles for Rz(Ry(Rx))) convention into a quaternion */
static inline CPPQR Angles2Quaternion ( const DistanceType& rotX, const DistanceType& rotY, const DistanceType& rotZ );
static inline CPPQR Point2Quaternion( const DistanceType v[3] );
/* SLERP -- Spherical Linear Interpolation */
inline CPPQR SLERP (const CPPQR& q, DistanceType w1, DistanceType w2) const;
/* HLERP -- Hemispherical Linear Interpolation */
inline CPPQR HLERP (const CPPQR& q, DistanceType w1, DistanceType w2) const;
/* SLERPDist -- Spherical Linear Interpolation distance */
inline DistanceType SLERPDist (const CPPQR& q) const;
/* HLERPDist -- Hemispherical Linear Interpolation distance */
inline DistanceType HLERPDist (const CPPQR& q) const;
}; // end class CPPQR
</tt>
</pre>
<p>
<h4>Description</h4>
<P>
The cqrlib.h header file defines the <b>CQRQuaternionHandle</b> type as a pointer to a struct of the <b>CQRQuaternion</b> type:
<p>
<pre><tt>
typedef struct {
double w;
double x;
double y;
double z; } CQRQuaternion;
</tt>
</pre>
representing w + xi +yj + zk. A quaternion may be declared directly using the <b>CQRQuaternion</b> type or dynamically
allocated by CQRCreateQuaternion or CQRCreateEmptyQuaternion, in which case it is a user responsibility to eventually
free the allocated memory with CQRFreeQuaternion. The components of an existing quaternion may be set by
CQRSetQuaternion.
<p>
The rules of quaternion arithmetic are applied:
<p>
-1 = i*i = j*j = k*k, i*j=k=-j*i, j*k=i=-j*k, k*i=j=-i*k
<p>
by CQRAdd, CQRSubtract, CQRMultiply and CQRDivide. CQRScalarMultiply multiplies a quaternion by a scalar.
<p>
CQREqual returns 0 if quaternion q1 == q2, component by component. CQRConjugate computes a quaternion with
the same scalar component and the negative of the vector component. CQRNormsq computes the sum of
the squares of the components. CQRInverse computes the inverse of a non-zero quaternion.
<p>
The functions CQRGetQuaternionW, CQRGetQuaternionX, CQRGetQuaternionY and CQRGetQuaternionZ extract the 4 components of a
quaternion. The function CQRGetQuaternionIm extract the imaginary part of a
quaternion as a quaternion with w=0. The function CQRQGetQuaternion extracts the
imaginary part and normalizes it to a unit vector. The function CQRGetQuaternionAngle
extracts the angle for the polar representation of a quaternion as an exponential (see below).
<p>
In handling rotations, a right-handed system is assumed.
CQRRotateByQuaternion rotates a vector by a quaternion, w = qvq*.
CQRAxis2Quaternion forms the quaternion for a rotation around axis v by angle theta.
CQRMatrix2Quaterion forms the quaternion equivalent a 3x3 rotation matrix R.
CQRQuaternion2Matrix forms a 3x3 rotation matrix from a quaternion.
CQRQuaternion2Angles converts a quaternion into Euler Angles for the Rz(Ry(Rx))) convention.
CQRAngles2Quaternion convert Euler angles for the Rz(Ry(Rx))) convention into a quaternion.
<p>
The logarithm of a quaternion in CQRLog is based on the polar representation
<p>
q = r*cos(theta) + r*sin(theta) [ i*axis_x + j*axis_y +k*axis_z]<br />
= r*exp(theta*[ i*axis_x + j*axis_y +k*axis_z])
<p>
with a unit axis. Then the natural logarithm is given by
<p>
log(q) = log(r) + theta*[ i*axis_x + j*axis_y +k*axis_z])
<p>
Note than any integer multiple of 2*PI could have been added to theta, so the
logarithm is multivalued. The code only returns one of these values. The
exponential in CQRExp is created by reversing the transformation. Taking
a quaternion to a quaternion power is done by taking the log, multiplying
by the power and then taking the exponential. Only one representative power
is returned by CQRQuaternionPower. CQRDoublePower takes a quaternion to
a double power by the same log-multiply-exp approach. CQRIntegerPower applies
positive and negative integer powers by multiplication withou taking any
logs or exponentials. CQRIntegerRoot applies the log-multiply-exp approach
for integer roots. The second integer argument allow selection of one of the
multiple roots. For roots of quaternions with a non-zero imaginary part, there
are r roots, so m = 0, 1, 2, ... r-1 are meaningful. For roots of reals,
there can be infinitely many alternate roots. In the case, m will cycle first
through the i-based roots, then the j-based roots and then the k-based roots.
<p>
The SLERP and HLERP functions combine quaternions by speherical linear interpolation. SLERP
take two quaternions and two weights and combine them following a great circle on the unit quaternion 4-D
sphere and linear interpolation between the radii. SLERP keeps a quaternion separate from the negative
of the same quaternion and is not appropriate for quaternions representing rotations. Use HLERP
to apply SLERP to quaternions representing rotations.
<p>
If operating with __cplusplus defined, then the CPPQR template is defined allowing the creation of CPPQR quaternion
objects. The template has three typename arguments: DistanceType, VectorType and MatrixType that default to double,
double[3] and double[9]. Specializations are provided to support a double[3][3] MatrixType.
<p>
<h4>Returns</h4>
<p>
The CQRlib functions return 0 for normal completion, or the sum of one or more of the following non-zero error codes:
<p>
<blockquote>
<table border="0">
<tr><td>Error Return </td><td>Numeric Value </td><td> Meaning</td></tr>
<tr><td>CQR_BAD_ARGUMENT </td><td> 1 </td><td> /* An argument is not valid */</td></tr>
<tr><td>CQR_NO_MEMORY </td><td> 2 </td><td> /* A call to allocate memory failed */</td></tr>
<tr><td>CQR_FAILED </td><td> 4 </td><td> /* Operation failed */</td></tr>
</table>
</blockquote>
</p>
<p>
<h4>Examples</h4>
<p>
To create a quaternion dynamically from memory, initialized as the x vector with a zero scalar value, reporting failure to stderr:
<P>
<pre><tt>
#include <cqrlib.h>
#include <stdio.h>
...
CQRQuaternionHandle quathandle;
...
if (CQRCreateQuaternion(&quathandle,0.,1.,0.,0.)) fprintf(stderr," CQRCreateQuaternion failed!!\n");
</tt></pre>
<P>
To create an x vector quaternion, a y vector quaternion, add then together and multiply by a z-vector,
and print the result :
<P>
<pre><tt>
#include <cqrlib.h>
#include <stdio.h>
...
CQRQuaternion qx, qy, qz, qresult1, qresult2;
...
if (CQRSetQuaternion(&qx,0.,1.,0.,0.)
||CQRSetQuaternion(&qy,0.,0.,1.,0.)
||CQRSetQuaternion(&qz,0.,0.,0.,1.)) fprintf(stderr," CQRSetQuaternion failed!!\n");
if (CQRAdd(&qresult1,&qx,&qy)||CQRMultiply(&qresult2,&qresult1,&qz))
fprintf(stderr," CQR Add or Multiply failed!!\n");
fprintf(stdout,"Result = ((i+j)*k) = %g %+gi %+gj + %+gk\n",
qresult2.w, qresult2.x, qresult2.y, qresult2.z);
</tt></pre>
<p>The output should be "Result = ((i+j)*k) = 0 +1i -1j +0k".
<p>
To rotate the 3D vector [-1.,0.,1.] 90 degrees clockwise around the vector [1.,1.,1.]:
<p>
<pre><tt>
#include <cqrlib.h>
#include <math.h>
#include <stdio.h>
...
double axis[3] = {1.,1.,1.};
double vector[3] = {-1.,0.,1.};
double result[3];
CQRQuaternion rotquat;
double PI;
PI = 4.*atan2(1.,1.);
CQRAxis2Quaternion(&rotquat,axis,PI/2);
CQRRotateByQuaternion(result, &rotquat, vector);
...
fprintf(stdout," [-1.,0.,1.] rotated 90 degrees clockwise"
" around the vector [1.,1.,1.] = [%g, %g, %g]\n",
result[0], result[1], result[2]);
</tt></pre>
<p>The output should be "[-1.,0.,1.] rotated 90 degrees clockwise around the vector [1.,1.,1.] = [0.57735, -1.1547, 0.57735]".
<p>
See the test program <a href="CQRlibTest.c">CQRlibTest.c</a>.
<p>
For examples of the use of the CPPQR template, see the C++ test program <a href="CPPQRTest.cpp">CPPQRTest.cpp</a>.
<hr>
<font size="2">
Updated 29 April 2018<br />
<script language="javascript" type="text/javascript">
<!--
var name = "yayahjb";
var domain = "gmail";
var domext = "com";
document.write ("<a href=\"mailto:" + name + "@" + domain + "." + domext + "\" style=\"text-decoration:none\">" + name + " <b>at</b> " + domain + " <b>dot</b> " + domext+"</a>");
// -->
</script>
<noscript>
yayahjb <b>at</b> gmail <b>dot</b> com
</noscript>
</font>
</font>
</body>
</html>
|