1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
/******************************************************************************
* Copyright © 2009-2016 -- LIRMM/CNRS *
* (Laboratoire d'Informatique, de Robotique et de *
* Microélectronique de Montpellier / *
* Centre National de la Recherche Scientifique) *
* LIFL/INRIA *
* (Laboratoire d'Informatique Fondamentale de *
* Lille / Institut National de Recherche en *
* Informatique et Automatique) *
* LITIS *
* (Laboratoire d'Informatique, du Traitement de *
* l'Information et des Systèmes). *
* *
* Copyright © 2011-2016 -- IRB/INSERM *
* (Institut de Recherches en Biothérapie / *
* Institut National de la Santé et de la Recherche *
* Médicale). *
* *
* Copyright © 2015-2016 -- AxLR/SATT *
* (Lanquedoc Roussilon / *
* Societe d'Acceleration de Transfert de *
* Technologie). *
* *
* Programmeurs/Progammers: *
* Nicolas PHILIPPE <nphilippe.resear@gmail.com> *
* Mikaël SALSON <mikael.salson@lifl.fr> *
* Jérôme Audoux <jerome.audoux@gmail.com> *
* with additional contribution for the packaging of: *
* Alban MANCHERON <alban.mancheron@lirmm.fr> *
* *
* Contact: CRAC list <crac-bugs@lists.gforge.inria.fr> *
* Paper: CRAC: An integrated RNA-Seq read analysis *
* Philippe N., Salson M., Commes T., Rivals E. *
* Genome Biology 2013; 14:R30. *
* *
* ------------------------------------------------------------------------- *
* *
* This File is part of the CRAC program. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or (at *
* your option) any later version. This program is distributed in the *
* hope that it will be useful, but WITHOUT ANY WARRANTY; without even *
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR *
* PURPOSE. See the GNU General Public License for more details. You *
* should have received a copy of the GNU General Public License along *
* with this program. If not, see <http://www.gnu.org/licenses/>. *
* *
******************************************************************************/
#ifndef SUPPORT_H
#define SUPPORT_H
#include <list>
#include "libSSA/locateOnGenome.h"
#include "Parameters.h"
#include "SupportBreak.h"
#include "ReadIndex.h"
#include "Read.h"
#include "Bitset.h"
using namespace std;
// TODO BLURF THIS DO NOT LOOK GOOD AT ALL!!!
// Is there a really good reason for that?
// Mike? Nico? Eric? (Ok I'm just kidding for the last one...)
class TagInfo;
class Support {
Parameters *parameters; /* parameters to init constant values*/
uint *support; /* the support by itself */
Read *read; /* the read we ara analyzing */
uint length; /* support length */
LocateOnGenome *genome; /* genome we are matching on */
ReadIndex *tags; /* index of the tags */
Support *pair_support;
uint nb_pos_located; /* number of distinct factors that are located
(at most getLength()) */
/* uint min_occ; /\* minimal number of occurrences for the support *\/ */
/* uint max_occ; /\* maximal number of occurrences for the support *\/ */
uint nb_single; /* number of factors single located */
uint nb_multiple; /* number of factors located many times (>1) */
uint nb_duplicate; // number of duplicates
bool almostNormal;
// The range support[start_pos_repeat ... end_pos_repeat] is such that
// each value is >= MIN_OCC_REPETITION
int start_pos_repeat; /* start position of the repeat in the support */
int end_pos_repeat; /* end position of the repeat in the support */
uint position_of_location; /* Position in the read of the best k-mer locations */
ChrPosition *best_location;
ChrPosition **locations; /* Locations of occurrences of the best k-mer
and its strand (if any) */
uint *nb_locs; /* number of occurrences of each factor are
located on the genome */
uint nb_locs_max; /* max value among the number of occurrences
computed in nb_locs */
uint nb_breaks; /* number of times consecutive factors are not
located on the genome */
SupportBreak **breaks;
pair <uint, uint> *ranges_forward; /* Range of occurrences, in the FM-index,
on the forward strand. */
pair <uint, uint> *ranges_reverse; /* Range of occurrences, in the FM-index,
on the reverse strand. */
float average_support; /* The average support of the read */
public:
Support(Parameters *p, uint *s, Read *r
,LocateOnGenome *g, ReadIndex *i, Support *psupport = NULL);
Support(const Support &);
~Support();
// REQUESTS //
/**
* @pre i < j && i < nb_breaks && j < nb_breaks
* && i >= 0 && j >= 0
* @return true when two breaks can be merged.
* A break can be merged when we obvisouly have random
* locations in the middle of a larger break.
* This can be detected by checking if genome locations
* of both breaks are in the same region.
*
* We also consider that we can merge two breaks
* when one of them is on a border and (is a chimeric break
* or does not have a long enough break).
*/
bool canMergeBreak(uint i, uint j);
/**
* @return the average support in the read
*/
float getAverage();
/**
* @return the variance of support in the read
*/
float getVariance();
/**
* @return the standard deviation of support in the read
*/
float getStandardDeviation();
/**
* @return the coefficient variation of support in the read
*/
float getCoefficientVariation();
/**
* @param i: the SupportBreak to return
* @param consider_strand: should we consider the strand when returning
* the break number i?
* @pre 0 <= i < nb_breaks
* @return the break number i in the read iff
* - we don't consider the strand,
* - it is on forward strand,
* - it is unknown
* the break number getNbBreaks() - i - 1, otherwise.
*/
SupportBreak *getBreak(uint i, bool consider_strand=false);
/**
* @return end_pos_repeat
*/
int getEndPosRepeat();
/**
* @return tags
*/
ReadIndex *getIndexTags();
/**
* @return genome
*/
LocateOnGenome *getGenome();
/**
* @return the support length
*/
uint getLength();
/**
* @return min_occ
* @post min_occ > 0 iff getNbSingle()+getNbMultiple() == getLength()
*/
/* uint getMinOcc(); */
/**
* @return max_occ
* @post max_occ == 0 iff isNone()
*/
/* uint getMaxOcc(); */
/**
* @return nb_breaks
*/
uint getNbBreaks();
/**
* @return nb_duplicate
* @post getNbDuplicate() <= getNbMultiple()
*/
uint getNbDuplicate();
/**
* @return nb_locs
*/
uint *getNbLocs();
/**
* @return nb_locs at position i
*/
uint getNbLocs(uint i);
/**
* @return the max value in nb_locs
*/
uint getNbLocsMax();
/**
* @return nb_multiple
*/
uint getNbMultiple();
/**
* @return the number of distinct positions where a factor of length
* getThreshold() is located.
*/
uint getNbPositionsLocated();
/**
* @return nb_single
*/
uint getNbSingle();
/**
* @return parameters
*/
Parameters *getParameters();
/**
* @return the 'best' location of a factor (of length getThreshold()) in the
* read.
* This is the location in the middle of a "run" of
* single-located factors. If no such location is found
* take a location in the middle of a run of located factors.
* If nothing is found return NULL
*/
ChrPosition *getBestLocation();
/**
* getLocation() is the position of the k-mer at position
* getPositionOfLocation() in the read.
* Return read->getLength() if getLocation() == NULL
*/
uint getPositionOfLocation();
/**
* @return position_of_location != read->getLength()
*/
bool hasPositionOfLocation();
/**
* @return the ChrPos location at pos i in locations at position_of_location;
*/
ChrPosition *getLocation(uint i);
/**
* @return all the ChrPos locations at position_of_location;
*/
ChrPosition **getLocations();
/**
* @post best_location = new ChrPosition(pos, chr, strand);
*/
void setBestLocation(ChrPosition *best_location);
/**
* Return the range of the k-mer at position i of
* the profile on a specific strand
*
* @param i the number of the kmer if the support
* @param strand the strand on wich we get the range
* @return the range of the kmer i in the genome index
*/
pair<uint, uint> getKmerRange(uint i, uint strand);
/**
* @return the length of the repetitioon or 0 if not
*/
int getRepeatLength();
/**
* @return start_pos_repeat, -1 if no repeat exists
*/
int getStartPosRepeat();
/**
* @return support
*/
uint *getSupport();
/**
* @return support at position i
*/
uint getSupport(uint i);
/**
* @return pair_support or NULL (in case of pair_support is not defined)
*/
Support *getPairSupport();
/**
* @return the read object
*/
Read *getRead();
/**
* @return threshold
*/
uint getThreshold();
/**
* A repetition is built by a number of consecutive k-mers with
* a number of occurrence >= parameters->min_occ_repetition
* @return (getRepeatLength() >= percent_min_unique_repetition*getNbPositionsLocated())
*
*/
bool hasRepeat();
/**
* @return isAlmostNormal
*/
bool isAlmostNormal();
/**
* return getLength() == getNbMultiple()+getNbSingle()
*/
bool isContinuous();
/**
* @return getNbDuplicate() >= params->percent_min_duplicate*getNbPositionsLocated()
*/
bool isDuplicate();
/**
* @return ! isDuplicate
* && (getNbSingle() < parameters->percent_max_unique_multiple*getNbPositionsLocated()
*/
bool isMultiple();
/**
* @return (nb_single == 0 && nb_multiple == 0)
* || (nb_breaks == 1 && breaks[0]->getPositionStartBreak() == 0
* && breaks[0]->getPositionEndBreak() == getLength()-1)
*/
bool isNone();
/**
* @return !isNone() && !isMultiple() && !isDuplicate()
*/
bool isSingle();
private:
/**
* All locations of a factor (of length getThreshold()) in
* the read (at @parameter pos) and its number of occurences. If too much
* locations return only getGenome()->getNbLocations() locations.
* @post set locations
* @post set nb_locs_max
*/
void setLocationsAt(uint pos);
/**
* Check when the support drop between two consecutives value in order to
* define a chunck
*/
bool isFallenSupport(uint s1, uint s2);
/**
* Check is the single chunck is not an artefact
*/
bool isSingleConsistent(uint start, uint length, uint windows);
/**
* According to the PE protocol (fr,rf,ff) we check if the pos chosen for the
* mates are consistent
*/
bool isPairedEndOrientationConsistent(ChrPosition *pos1, ChrPosition *pos2);
/**
* Check if locations oscillate inside a chunck
* We use min, max, average, variance, standard_deviation and standard_error
*/
bool isOscillateLoc(uint start, uint length);
/**
* Check if the break just before/after the chunck is long enough
* and greater than (k-1) by adding the chunck length
*/
bool isGoodBreak(uint start_chunck, uint chunck_length, uint start_break, uint break_length);
/**
* @return the median pos of the chunck of representatives locations number
*/
uint getMedianRun(uint start, uint length, bool accept_single=false);
/**
* Choose the position of the k-mer anchor for the mapping process
*/
void computeBestLocation(bool only_single, bool accept_single=false);
/**
* Will merge breaks using the following algorithm:
* If a break is at the beginning of the read and the next one
* ! isNiceBreak()
* -> merge them (if there are less than MIN_BASES_BEFORE_BREAK nt between them)
* If a break is at the end of the read and the previous one
* ! isNiceBreak()
* -> merge them (if there are less than MIN_BASES_BEFORE_BREAK nt between them)
* For each short chimeric break:
* if isNiceMerge() is true with the next or previous break and is not too far
* -> merge
* else if the next or previous break is chimeric
* merge with the closest one if it is not too far
* (< 2 * getThreshold)
* else if the next or previous break is at the start or at the
* end of the read
* -> merge
* For each chimeric break (not yet merged):
* if isNiceMerge() is true with the next or previous break and is not too far
* or if the next break is chimeric and not too far (< 2 * getThreshold())
* from the current break
* or if the next or previous break is at the start or at the
* end of the read
* -> merge
* For each break:
* Merge with the next one iff the resulting break isVeryNiceBreak(),
* the current break or the next one are not isVeryNiceBreak()
* and if the resulting break lengthis <= getThreshold().
* We also merge in the case two consecutive breaks are overlapping
*/
void tryToMergeBreaks();
/**
* Will merge locations of the representative k-mer of both paired reads
* in order to reduce false positives k-mer located. If the intersection
* of locations is empty, we do nothing.
*/
void checkPairedConnection();
/**
* Erase locations according to a Bitset of false_positive positions
*/
void removeLocations(Bitset *false_positives);
};
#endif
|