1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
|
/**
* @file
* @brief Line-of-sight algorithm.
*
*
*
* == Definition of visibility ==
*
* Two cells are in view of each other if there is any straight
* line that meets both cells and that doesn't meet any opaque
* cell in between, and if the cells are in LOS range of each
* other.
*
* Here, to "meet" a cell means to intersect the interior. In
* particular, rays can pass between to diagonally adjacent
* walls (as can the player).
*
* == Terminology ==
*
* A _ray_ is a line, specified by starting point (accx, accy)
* and slope. A ray determines its _footprint_: the sequence of
* cells whose interiour it meets.
*
* Any prefix of the footprint of a ray is called a _cellray_.
*
* For the purposes of LOS calculation, only the footprints
* are relevant, but rays are also used for shooting beams,
* which may travel beyond LOS and which can be reflected.
* See ray.cc.
*
* == Overview ==
*
* At first use, the LOS code makes some precomputations,
* filling a list of all relevant rays in one quadrant,
* and filling data structures that allow calculating LOS
* in a quadrant without checking each ray.
*
* The code provides functions for filling LOS information
* around a given center efficiently, and for querying rays
* between two given cells.
**/
#include "AppHdr.h"
#include "los.h"
#include <algorithm>
#include <cmath>
#include "areas.h"
#include "coord.h"
#include "coordit.h"
#include "env.h"
#include "losglobal.h"
#include "mon-act.h"
#include "mpr.h"
// These determine what rays are cast in the precomputation,
// and affect start-up time significantly.
// XXX: Argue that these values are sufficient.
#define LOS_MAX_ANGLE (2*LOS_MAX_RANGE-2)
#define LOS_INTERCEPT_MULT (2)
// These store all unique (in terms of footprint) full rays.
// The footprint of ray=fullray[i] consists of ray.length cells,
// stored in ray_coords[ray.start..ray.length-1].
// These are filled during precomputation (_register_ray).
// XXX: fullrays is not needed anymore after precomputation.
struct los_ray;
static vector<los_ray> fullrays;
static vector<coord_def> ray_coords;
// These store all unique minimal cellrays. For each i,
// cellray i ends in cellray_ends[i] and passes through
// those cells p that have blockrays(p)[i] set. In other
// words, blockrays(p)[i] is set iff an opaque cell p blocks
// the cellray with index i.
static vector<coord_def> cellray_ends;
typedef FixedArray<bit_vector*, LOS_MAX_RANGE+1, LOS_MAX_RANGE+1> blockrays_t;
static blockrays_t blockrays;
// We also store the minimal cellrays by target position
// for efficient retrieval by find_ray.
// XXX: Consider condensing this representation.
struct cellray;
static FixedArray<vector<cellray>, LOS_MAX_RANGE+1, LOS_MAX_RANGE+1> min_cellrays;
// Temporary arrays used in losight() to track which rays
// are blocked or have seen a smoke cloud.
// Allocated when doing the precomputations.
static bit_vector *dead_rays = nullptr;
static bit_vector *smoke_rays = nullptr;
class quadrant_iterator : public rectangle_iterator
{
public:
quadrant_iterator()
: rectangle_iterator(coord_def(0,0),
coord_def(LOS_MAX_RANGE, LOS_MAX_RANGE))
{
}
};
void clear_rays_on_exit()
{
delete dead_rays;
delete smoke_rays;
for (quadrant_iterator qi; qi; ++qi)
delete blockrays(*qi);
}
// LOS radius.
int los_radius = LOS_DEFAULT_RANGE;
static void _handle_los_change();
void set_los_radius(int r)
{
ASSERT(r <= LOS_RADIUS);
los_radius = r;
invalidate_los();
_handle_los_change();
}
int get_los_radius()
{
return los_radius;
}
bool double_is_zero(const double x)
{
return x > -EPSILON_VALUE && x < EPSILON_VALUE;
}
struct los_ray : public ray_def
{
// The footprint of this ray is stored in
// ray_coords[start..start+length-1].
unsigned int start;
unsigned int length;
los_ray(geom::ray _r)
: ray_def(_r), start(0), length(0)
{
}
// Shoot a ray from the given start point (accx, accy) with the given
// slope, bounded by the pre-calc bounds shape.
// Returns the cells it travels through, excluding the origin.
// Returns an empty vector if this was a bad ray.
vector<coord_def> footprint()
{
vector<coord_def> cs;
los_ray copy = *this;
coord_def c;
coord_def old;
while (true)
{
old = c;
if (!copy.advance())
{
// dprf("discarding corner ray (%f,%f) + t*(%f,%f)",
// r.start.x, r.start.y, r.dir.x, r.dir.y);
cs.clear();
break;
}
c = copy.pos();
if (c.rdist() > LOS_RADIUS)
break;
cs.push_back(c);
ASSERT((c - old).rdist() == 1);
}
return cs;
}
coord_def operator[](unsigned int i)
{
ASSERT(i < length);
return ray_coords[start+i];
}
};
// Check if the passed rays have identical footprint.
static bool _is_same_ray(los_ray ray, vector<coord_def> newray)
{
if (ray.length != newray.size())
return false;
for (unsigned int i = 0; i < ray.length; i++)
if (ray[i] != newray[i])
return false;
return true;
}
// Check if the passed ray has already been created.
static bool _is_duplicate_ray(vector<coord_def> newray)
{
for (los_ray lray : fullrays)
if (_is_same_ray(lray, newray))
return true;
return false;
}
// A cellray given by fullray and index of end-point.
struct cellray
{
// A cellray passes through cells ray_coords[ray.start..ray.start+end].
los_ray ray;
unsigned int end; // Relative index (inside ray) of end cell.
cellray(const los_ray& r, unsigned int e)
: ray(r), end(e), imbalance(-1), first_diag(false)
{
}
// The end-point's index inside ray_coord.
int index() const { return ray.start + end; }
// The end-point.
coord_def target() const { return ray_coords[index()]; }
// XXX: Currently ray/cellray[0] is the first point outside the origin.
coord_def operator[](unsigned int i)
{
ASSERT(i <= end);
return ray_coords[ray.start+i];
}
// Parameters used in find_ray. These need to be calculated
// only for the minimal cellrays.
int imbalance;
bool first_diag;
void calc_params();
};
// Compare two cellrays to the same target.
// This determines which ray is considered better by find_ray,
// used with list::sort.
// Returns true if a is strictly better than b, false else.
static bool _is_better(const cellray& a, const cellray& b)
{
// Only compare cellrays with equal target.
ASSERT(a.target() == b.target());
// calc_params() has been called.
ASSERT(a.imbalance >= 0);
ASSERT(b.imbalance >= 0);
if (a.imbalance < b.imbalance)
return true;
else if (a.imbalance > b.imbalance)
return false;
else
return a.first_diag && !b.first_diag;
}
enum class compare_type
{
neither,
subray,
superray,
};
// Check whether one of the passed cellrays is a subray of the
// other in terms of footprint.
static compare_type _compare_cellrays(const cellray& a, const cellray& b)
{
if (a.target() != b.target())
return compare_type::neither;
int cura = a.ray.start;
int curb = b.ray.start;
int enda = cura + a.end;
int endb = curb + b.end;
bool maybe_sub = true;
bool maybe_super = true;
while (cura < enda && curb < endb && (maybe_sub || maybe_super))
{
coord_def pa = ray_coords[cura];
coord_def pb = ray_coords[curb];
if (pa.x > pb.x || pa.y > pb.y)
{
maybe_super = false;
curb++;
}
if (pa.x < pb.x || pa.y < pb.y)
{
maybe_sub = false;
cura++;
}
if (pa == pb)
{
cura++;
curb++;
}
}
maybe_sub = maybe_sub && cura == enda;
maybe_super = maybe_super && curb == endb;
if (maybe_sub)
return compare_type::subray; // includes equality
else if (maybe_super)
return compare_type::superray;
else
return compare_type::neither;
}
// Determine all minimal cellrays.
// They're stored globally by target in min_cellrays,
// and returned as a list of indices into ray_coords.
static vector<int> _find_minimal_cellrays()
{
FixedArray<list<cellray>, LOS_MAX_RANGE+1, LOS_MAX_RANGE+1> minima;
list<cellray>::iterator min_it;
for (los_ray ray : fullrays)
{
for (unsigned int i = 0; i < ray.length; ++i)
{
// Is the cellray ray[0..i] duplicated so far?
bool dup = false;
cellray c(ray, i);
list<cellray>& min = minima(c.target());
bool erased = false;
for (min_it = min.begin();
min_it != min.end() && !dup;)
{
switch (_compare_cellrays(*min_it, c))
{
case compare_type::subray:
dup = true;
break;
case compare_type::superray:
min_it = min.erase(min_it);
erased = true;
// clear this should be added, but might have
// to erase more
break;
case compare_type::neither:
default:
break;
}
if (!erased)
++min_it;
else
erased = false;
}
if (!dup)
min.push_back(c);
}
}
vector<int> result;
for (quadrant_iterator qi; qi; ++qi)
{
list<cellray>& min = minima(*qi);
for (min_it = min.begin(); min_it != min.end(); ++min_it)
{
// Calculate imbalance and slope difference for sorting.
min_it->calc_params();
result.push_back(min_it->index());
}
min.sort(_is_better);
min_cellrays(*qi) = vector<cellray>(min.begin(), min.end());
}
return result;
}
// Create and register the ray defined by the arguments.
static void _register_ray(geom::ray r)
{
los_ray ray = los_ray(r);
vector<coord_def> coords = ray.footprint();
if (coords.empty() || _is_duplicate_ray(coords))
return;
ray.start = ray_coords.size();
ray.length = coords.size();
for (coord_def c : coords)
ray_coords.push_back(c);
fullrays.push_back(ray);
}
static void _create_blockrays()
{
// First, we calculate blocking information for all cell rays.
// Cellrays are numbered according to the index of their end
// cell in ray_coords.
const int n_cellrays = ray_coords.size();
blockrays_t all_blockrays;
for (quadrant_iterator qi; qi; ++qi)
all_blockrays(*qi) = new bit_vector(n_cellrays);
for (los_ray ray : fullrays)
{
for (unsigned int i = 0; i < ray.length; ++i)
{
// Every cell is contained in (thus blocks)
// all following cellrays.
for (unsigned int j = i + 1; j < ray.length; ++j)
all_blockrays(ray[i])->set(ray.start + j);
}
}
// We've built the basic blockray array; now compress it, keeping
// only the nonduplicated cellrays.
// Determine minimal cellrays and store their indices in ray_coords.
vector<int> min_indices = _find_minimal_cellrays();
const int n_min_rays = min_indices.size();
cellray_ends.resize(n_min_rays);
for (int i = 0; i < n_min_rays; ++i)
cellray_ends[i] = ray_coords[min_indices[i]];
// Compress blockrays accordingly.
for (quadrant_iterator qi; qi; ++qi)
{
blockrays(*qi) = new bit_vector(n_min_rays);
for (int i = 0; i < n_min_rays; ++i)
{
blockrays(*qi)->set(i, all_blockrays(*qi)
->get(min_indices[i]));
}
}
// We can throw away all_blockrays now.
for (quadrant_iterator qi; qi; ++qi)
delete all_blockrays(*qi);
dead_rays = new bit_vector(n_min_rays);
smoke_rays = new bit_vector(n_min_rays);
dprf("Cellrays: %d Fullrays: %u Minimal cellrays: %u",
n_cellrays, (unsigned int)fullrays.size(), n_min_rays);
}
static int _gcd(int x, int y)
{
int tmp;
while (y != 0)
{
x %= y;
tmp = x;
x = y;
y = tmp;
}
return x;
}
static bool _complexity_lt(const pair<int,int>& lhs, const pair<int,int>& rhs)
{
return lhs.first * lhs.second < rhs.first * rhs.second;
}
// Cast all rays
static void raycast()
{
static bool done_raycast = false;
if (done_raycast)
return;
// Creating all rays for first quadrant
// We have a considerable amount of overkill.
done_raycast = true;
// register perpendiculars FIRST, to make them top choice
// when selecting beams
_register_ray(geom::ray(0.5, 0.5, 0.0, 1.0));
_register_ray(geom::ray(0.5, 0.5, 1.0, 0.0));
// For a slope of M = y/x, every x we move on the X axis means
// that we move y on the y axis. We want to look at the resolution
// of x/y: in that case, every step on the X axis means an increase
// of 1 in the Y axis at the intercept point. We can assume gcd(x,y)=1,
// so we look at steps of 1/y.
// Changing the order a bit. We want to order by the complexity
// of the beam, which is log(x) + log(y) ~ xy.
vector<pair<int,int> > xyangles;
for (int xangle = 1; xangle <= LOS_MAX_ANGLE; ++xangle)
for (int yangle = 1; yangle <= LOS_MAX_ANGLE; ++yangle)
{
if (_gcd(xangle, yangle) == 1)
xyangles.emplace_back(xangle, yangle);
}
sort(xyangles.begin(), xyangles.end(), _complexity_lt);
for (auto xyangle : xyangles)
{
const int xangle = xyangle.first;
const int yangle = xyangle.second;
for (int intercept = 1; intercept < LOS_INTERCEPT_MULT*yangle; ++intercept)
{
double xstart = ((double)intercept) / (LOS_INTERCEPT_MULT*yangle);
double ystart = 0.5;
_register_ray(geom::ray(xstart, ystart, xangle, yangle));
// also draw the identical ray in octant 2
_register_ray(geom::ray(ystart, xstart, yangle, xangle));
}
}
// Now create the appropriate blockrays array
_create_blockrays();
}
static int _imbalance(ray_def ray, const coord_def& target)
{
int imb = 0;
int diags = 0, straights = 0;
while (ray.pos() != target)
{
coord_def old = ray.pos();
if (!ray.advance())
die("can't advance ray");
switch ((ray.pos() - old).abs())
{
case 1:
diags = 0;
if (++straights > imb)
imb = straights;
break;
case 2:
straights = 0;
if (++diags > imb)
imb = diags;
break;
default:
die("ray imbalance out of range");
}
}
return imb;
}
void cellray::calc_params()
{
coord_def trg = target();
imbalance = _imbalance(ray, trg);
first_diag = ((*this)[0].abs() == 2);
}
// Find ray in positive quadrant.
// opc has been translated for this quadrant.
// XXX: Allow finding ray of minimum opacity.
static bool _find_ray_se(const coord_def& target, ray_def& ray,
const opacity_func& opc, int range, bool cycle)
{
ASSERT(target.x >= 0);
ASSERT(target.y >= 0);
ASSERT(!target.origin());
if (target.rdist() > range)
return false;
ASSERT(target.rdist() <= LOS_RADIUS);
// Ensure the precalculations have been done.
raycast();
const vector<cellray> &min = min_cellrays(target);
ASSERT(!min.empty());
cellray c = min[0]; // XXX: const cellray &c ?
unsigned int index = 0;
if (cycle)
dprf("cycling from %d (total %u)", ray.cycle_idx, (unsigned int)min.size());
unsigned int start = cycle ? ray.cycle_idx + 1 : 0;
ASSERT(start <= min.size());
int blocked = OPC_OPAQUE;
for (unsigned int i = start;
(blocked >= OPC_OPAQUE) && (i < start + min.size()); i++)
{
index = i % min.size();
c = min[index];
blocked = OPC_CLEAR;
// Check all inner points.
for (unsigned int j = 0; j < c.end && blocked < OPC_OPAQUE; j++)
blocked += opc(c[j]);
}
if (blocked >= OPC_OPAQUE)
return false;
ray = c.ray;
ray.cycle_idx = index;
return true;
}
// Coordinate transformation so we can find_ray quadrant-by-quadrant.
struct opacity_trans : public opacity_func
{
const coord_def& source;
int signx, signy;
const opacity_func& orig;
opacity_trans(const opacity_func& opc, const coord_def& s, int sx, int sy)
: source(s), signx(sx), signy(sy), orig(opc)
{
}
CLONE(opacity_trans)
opacity_type operator()(const coord_def &l) const override
{
return orig(transform(l));
}
coord_def transform(const coord_def &l) const
{
return coord_def(source.x + signx*l.x, source.y + signy*l.y);
}
};
// Find a nonblocked ray from source to target. Return false if no
// such ray could be found, otherwise return true and fill ray
// appropriately.
// if range is too great or all rays are blocked.
// If cycle is false, find the first fitting ray. If it is true,
// assume that ray is appropriately filled in, and look for the next
// ray. We only ever use ray.cycle_idx.
bool find_ray(const coord_def& source, const coord_def& target,
ray_def& ray, const opacity_func& opc, int range,
bool cycle)
{
if (target == source || !map_bounds(source) || !map_bounds(target))
return false;
const int signx = ((target.x - source.x >= 0) ? 1 : -1);
const int signy = ((target.y - source.y >= 0) ? 1 : -1);
const int absx = signx * (target.x - source.x);
const int absy = signy * (target.y - source.y);
const coord_def abs = coord_def(absx, absy);
opacity_trans opc_trans = opacity_trans(opc, source, signx, signy);
if (!_find_ray_se(abs, ray, opc_trans, range, cycle))
return false;
if (signx < 0)
ray.r.start.x = 1.0 - ray.r.start.x;
if (signy < 0)
ray.r.start.y = 1.0 - ray.r.start.y;
ray.r.dir.x *= signx;
ray.r.dir.y *= signy;
ray.r.start.x += source.x;
ray.r.start.y += source.y;
return true;
}
bool exists_ray(const coord_def& source, const coord_def& target,
const opacity_func& opc, int range)
{
ray_def ray;
return find_ray(source, target, ray, opc, range);
}
// Assuming that target is in view of source, but line of
// fire is blocked, what is it blocked by?
dungeon_feature_type ray_blocker(const coord_def& source,
const coord_def& target)
{
ray_def ray;
if (!find_ray(source, target, ray, opc_default))
return NUM_FEATURES;
ray.advance();
int blocked = 0;
while (ray.pos() != target)
{
blocked += opc_solid_see(ray.pos());
if (blocked >= OPC_OPAQUE)
return env.grid(ray.pos());
ray.advance();
}
ASSERT(false);
return NUM_FEATURES;
}
// Returns a straight ray from source to target.
void fallback_ray(const coord_def& source, const coord_def& target,
ray_def& ray)
{
ray.r.start.x = source.x + 0.5;
ray.r.start.y = source.y + 0.5;
coord_def diff = target - source;
ray.r.dir.x = diff.x;
ray.r.dir.y = diff.y;
ray.on_corner = false;
}
// Is p2 visible from p1, disregarding half-opaque objects?
bool cell_see_cell_nocache(const coord_def& p1, const coord_def& p2)
{
return exists_ray(p1, p2, opc_fullyopaque);
}
// We use raycasting. The algorithm:
// PRECOMPUTATION:
// Create a large bundle of rays and cast them.
// Mark, for each one, which cells kill it (and where.)
// Also, for each one, note which cells it passes.
// ACTUAL LOS:
// Unite the ray-killers for the given map; this tells you which rays
// are dead.
// Look up which cells the surviving rays have, and that's your LOS!
// OPTIMIZATIONS:
// WLOG, we can assume that we're in a specific quadrant - say the
// first quadrant - and just mirror everything after that. We can
// likely get away with a single octant, but we don't do that. (To
// do...)
// Rays are actually split by each cell they pass. So each "ray" only
// identifies a single cell, and we can do logical ORs. Once a cell
// kills a cellray, it will kill all remaining cellrays of that ray.
// Also, rays are checked to see if they are duplicates of each
// other. If they are, they're eliminated.
// Some cellrays can also be eliminated. In general, a cellray is
// unnecessary if there is another cellray with the same coordinates,
// and whose path (up to those coordinates) is a subset, not necessarily
// proper, of the original path. We still store the original cellrays
// fully for beam detection and such.
// PERFORMANCE:
// With reasonable values we have around 6000 cellrays, meaning
// around 600Kb (75 KB) of data. This gets cut down to 700 cellrays
// after removing duplicates. That means that we need to do
// around 22*100*4 ~ 9,000 memory reads + writes per LOS call on a
// 32-bit system. Not too bad.
// IMPROVEMENTS:
// Smoke will now only block LOS after two cells of smoke. This is
// done by updating with a second array.
static void _losight_quadrant(los_grid& sh, const los_param& dat, int sx, int sy)
{
const unsigned int num_cellrays = cellray_ends.size();
dead_rays->reset();
smoke_rays->reset();
for (quadrant_iterator qi; qi; ++qi)
{
coord_def p = coord_def(sx*(qi->x), sy*(qi->y));
if (!dat.los_bounds(p))
continue;
switch (dat.opacity(p))
{
case OPC_OPAQUE:
// Block the appropriate rays.
*dead_rays |= *blockrays(*qi);
break;
case OPC_HALF:
// Block rays which have already seen a cloud.
*dead_rays |= (*smoke_rays & *blockrays(*qi));
*smoke_rays |= *blockrays(*qi);
break;
default:
break;
}
}
// Ray calculation done. Now work out which cells in this
// quadrant are visible.
for (unsigned int rayidx = 0; rayidx < num_cellrays; ++rayidx)
{
// make the cells seen by this ray at this point visible
if (!dead_rays->get(rayidx))
{
// This ray is alive, thus the end cell is visible.
const coord_def p = coord_def(sx * cellray_ends[rayidx].x,
sy * cellray_ends[rayidx].y);
if (dat.los_bounds(p))
sh(p) = true;
}
}
}
struct los_param_funcs : public los_param
{
coord_def center;
const opacity_func& opc;
const circle_def& bounds;
los_param_funcs(const coord_def& c,
const opacity_func& o, const circle_def& b)
: center(c), opc(o), bounds(b)
{
}
bool los_bounds(const coord_def& p) const override
{
return map_bounds(p + center) && bounds.contains(p);
}
opacity_type opacity(const coord_def& p) const override
{
return opc(p + center);
}
};
void losight(los_grid& sh, const coord_def& center,
const opacity_func& opc, const circle_def& bounds)
{
const los_param& dat = los_param_funcs(center, opc, bounds);
sh.init(false);
// Do precomputations if necessary.
raycast();
const int quadrant_x[4] = { 1, -1, -1, 1 };
const int quadrant_y[4] = { 1, 1, -1, -1 };
for (int q = 0; q < 4; ++q)
_losight_quadrant(sh, dat, quadrant_x[q], quadrant_y[q]);
// Center is always visible.
const coord_def o = coord_def(0,0);
sh(o) = true;
}
opacity_type mons_opacity(const monster* mon, los_type how)
{
// no regard for LOS_ARENA
if (mons_species(mon->type) == MONS_BUSH
&& how != LOS_SOLID)
{
return OPC_HALF;
}
return OPC_CLEAR;
}
/////////////////////////////////////
// A start at tracking LOS changes.
// Something that affects LOS (with default parameters)
// has changed somewhere.
static void _handle_los_change()
{
invalidate_agrid();
}
static bool _mons_block_sight(const monster* mons)
{
// must be the least permissive one
return mons_opacity(mons, LOS_SOLID_SEE) != OPC_CLEAR;
}
void los_actor_moved(const actor* act, const coord_def& oldpos)
{
if (act->is_monster() && _mons_block_sight(act->as_monster()))
{
invalidate_los_around(oldpos);
invalidate_los_around(act->pos());
_handle_los_change();
}
}
void los_monster_died(const monster* mon)
{
if (_mons_block_sight(mon))
{
invalidate_los_around(mon->pos());
_handle_los_change();
}
}
// Might want to pass new/old terrain.
void los_terrain_changed(const coord_def& p)
{
invalidate_los_around(p);
_handle_los_change();
}
void los_changed()
{
mons_reset_just_seen();
invalidate_los();
_handle_los_change();
}
|