1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
#include "AppHdr.h"
#include "mon-movetarget.h"
#include "coord.h"
#include "coordit.h"
#include "env.h"
#include "fprop.h"
#include "mon-behv.h"
#include "mon-pathfind.h"
#include "mon-place.h"
#include "mon-stuff.h"
#include "mon-util.h"
#include "monster.h"
#include "player.h"
#include "random.h"
#include "stuff.h"
#include "terrain.h"
#include "traps.h"
// If a monster can see but not directly reach the target, and then fails to
// find a path to get there, mark all surrounding (in a radius of 2) monsters
// of the same (or greater) movement restrictions as also being unable to
// find a path, so we won't need to calculate again.
// Should there be a direct path to the target for a monster thus marked, it
// will still be able to come nearer (and the mark will then be cleared).
static void _mark_neighbours_target_unreachable(monsters *mon)
{
// Highly intelligent monsters are perfectly capable of pathfinding
// and don't need their neighbour's advice.
const mon_intel_type intel = mons_intel(mon);
if (intel > I_NORMAL)
return;
const bool flies = mons_flies(mon);
const bool amphibious = mons_amphibious(mon);
const habitat_type habit = mons_primary_habitat(mon);
for (radius_iterator ri(mon->pos(), 2, true, false); ri; ++ri)
{
if (*ri == mon->pos())
continue;
// Don't alert monsters out of sight (e.g. on the other side of
// a wall).
if (!mon->see_cell(*ri))
continue;
monsters* const m = monster_at(*ri);
if (m == NULL)
continue;
// Don't restrict smarter monsters as they might find a path
// a dumber monster wouldn't.
if (mons_intel(m) > intel)
continue;
// Monsters of differing habitats might prefer different routes.
if (mons_primary_habitat(m) != habit)
continue;
// A flying monster has an advantage over a non-flying one.
// Same for a swimming one.
if (!flies && mons_flies(m) || !amphibious && mons_amphibious(m))
continue;
if (m->travel_target == MTRAV_NONE)
m->travel_target = MTRAV_UNREACHABLE;
}
}
static void _set_no_path_found(monsters *mon)
{
#ifdef DEBUG_PATHFIND
mpr("No path found!");
#endif
mon->travel_target = MTRAV_UNREACHABLE;
// Pass information on to nearby monsters.
_mark_neighbours_target_unreachable(mon);
}
static bool _target_is_unreachable(monsters *mon)
{
return (mon->travel_target == MTRAV_UNREACHABLE
|| mon->travel_target == MTRAV_KNOWN_UNREACHABLE);
}
//#define DEBUG_PATHFIND
// The monster is trying to get to the player (MHITYOU).
// Check whether there's an unobstructed path to the player (in sight!),
// either by using an existing travel_path or calculating a new one.
// Returns true if no further handling necessary, else false.
bool try_pathfind(monsters *mon, const dungeon_feature_type can_move)
{
// Just because we can *see* the player, that doesn't mean
// we can actually get there.
// If no path is found (too far away, perhaps) set a
// flag, so we don't directly calculate the whole thing again
// next turn, and even extend that flag to neighbouring
// monsters of similar movement restrictions.
bool need_pathfind = !can_go_straight(mon->pos(), you.pos(), can_move);
// Smart monsters that can fire through obstacles won't use
// pathfinding.
if (need_pathfind
&& mons_intel(mon) >= I_NORMAL && !mon->friendly()
&& mons_has_los_ability(mon->type))
{
need_pathfind = false;
}
// Also don't use pathfinding if the monster can shoot
// across the blocking terrain, and is smart enough to
// realise that.
if (need_pathfind
&& mons_intel(mon) >= I_NORMAL && !mon->friendly()
&& (mons_has_ranged_spell(mon, true)
|| mons_has_ranged_attack(mon))
&& exists_ray(mon->pos(), you.pos(), opc_solid))
{
need_pathfind = false;
}
if (!need_pathfind)
{
// The player is easily reachable.
// Clear travel path and target, if necessary.
if (mon->travel_target != MTRAV_PATROL
&& mon->travel_target != MTRAV_NONE)
{
if (mon->is_travelling())
mon->travel_path.clear();
mon->travel_target = MTRAV_NONE;
}
return (false);
}
// If the target is "unreachable" (the monster already tried,
// and failed, to find a path), there's a chance of trying again.
if (_target_is_unreachable(mon) && !one_chance_in(12))
return (false);
#ifdef DEBUG_PATHFIND
mprf("%s: Player out of reach! What now?",
mon->name(DESC_PLAIN).c_str());
#endif
// If we're already on our way, do nothing.
if (mon->is_travelling() && mon->travel_target == MTRAV_PLAYER)
{
const int len = mon->travel_path.size();
const coord_def targ = mon->travel_path[len - 1];
// Current target still valid?
if (can_go_straight(targ, you.pos(), can_move))
{
// Did we reach the target?
if (mon->pos() == mon->travel_path[0])
{
// Get next waypoint.
mon->travel_path.erase( mon->travel_path.begin() );
if (!mon->travel_path.empty())
{
mon->target = mon->travel_path[0];
return (true);
}
}
else if (can_go_straight(mon->pos(), mon->travel_path[0],
can_move))
{
mon->target = mon->travel_path[0];
return (true);
}
}
}
// Use pathfinding to find a (new) path to the player.
const int dist = grid_distance(mon->pos(), you.pos());
#ifdef DEBUG_PATHFIND
mprf("Need to calculate a path... (dist = %d)", dist);
#endif
const int range = mons_tracking_range(mon);
if (range > 0 && dist > range)
{
mon->travel_target = MTRAV_UNREACHABLE;
#ifdef DEBUG_PATHFIND
mprf("Distance too great, don't attempt pathfinding! (%s)",
mon->name(DESC_PLAIN).c_str());
#endif
return (false);
}
#ifdef DEBUG_PATHFIND
mprf("Need a path for %s from (%d, %d) to (%d, %d), max. dist = %d",
mon->name(DESC_PLAIN).c_str(), mon->pos(), you.pos(), range);
#endif
monster_pathfind mp;
if (range > 0)
mp.set_range(range);
if (mp.init_pathfind(mon, you.pos()))
{
mon->travel_path = mp.calc_waypoints();
if (!mon->travel_path.empty())
{
// Okay then, we found a path. Let's use it!
mon->target = mon->travel_path[0];
mon->travel_target = MTRAV_PLAYER;
return (true);
}
else
_set_no_path_found(mon);
}
else
_set_no_path_found(mon);
// We didn't find a path.
return (false);
}
static bool _is_level_exit(const coord_def& pos)
{
// All types of stairs.
if (feat_is_stair(grd(pos)))
return (true);
// Teleportation and shaft traps.
const trap_type tt = get_trap_type(pos);
if (tt == TRAP_TELEPORT || tt == TRAP_SHAFT)
return (true);
return (false);
}
// Returns true if a monster left the level.
bool pacified_leave_level(monsters *mon, std::vector<level_exit> e,
int e_index)
{
// If a pacified monster is leaving the level, and has reached an
// exit (whether that exit was its target or not), handle it here.
// Likewise, if a pacified monster is far enough away from the
// player, make it leave the level.
if (_is_level_exit(mon->pos())
|| (e_index != -1 && mon->pos() == e[e_index].target)
|| grid_distance(mon->pos(), you.pos()) >= LOS_RADIUS * 4)
{
make_mons_leave_level(mon);
return (true);
}
return (false);
}
// Counts deep water twice.
static int _count_water_neighbours(coord_def p)
{
int water_count = 0;
for (adjacent_iterator ai(p); ai; ++ai)
{
if (grd(*ai) == DNGN_SHALLOW_WATER)
water_count++;
else if (grd(*ai) == DNGN_DEEP_WATER)
water_count += 2;
}
return (water_count);
}
// Pick the nearest water grid that is surrounded by the most
// water squares within LoS.
bool find_siren_water_target(monsters *mon)
{
ASSERT(mon->type == MONS_SIREN);
// Moving away could break the entrancement, so don't do this.
if ((mon->pos() - you.pos()).rdist() >= 6)
return (false);
// Already completely surrounded by deep water.
if (_count_water_neighbours(mon->pos()) >= 16)
return (true);
if (mon->travel_target == MTRAV_SIREN)
{
coord_def targ_pos(mon->travel_path[mon->travel_path.size() - 1]);
#ifdef DEBUG_PATHFIND
mprf("siren target is (%d, %d), dist = %d",
targ_pos.x, targ_pos.y, (int) (mon->pos() - targ_pos).rdist());
#endif
if ((mon->pos() - targ_pos).rdist() > 2)
return (true);
}
int best_water_count = 0;
coord_def best_target;
bool first = true;
while (true)
{
int best_num = 0;
for (radius_iterator ri(mon->pos(), LOS_RADIUS, true, false);
ri; ++ri)
{
if (!feat_is_water(grd(*ri)))
continue;
// In the first iteration only count water grids that are
// not closer to the player than to the siren.
if (first && (mon->pos() - *ri).rdist() > (you.pos() - *ri).rdist())
continue;
// Counts deep water twice.
const int water_count = _count_water_neighbours(*ri);
if (water_count < best_water_count)
continue;
if (water_count > best_water_count)
{
best_water_count = water_count;
best_target = *ri;
best_num = 1;
}
else // water_count == best_water_count
{
const int old_dist = (mon->pos() - best_target).rdist();
const int new_dist = (mon->pos() - *ri).rdist();
if (new_dist > old_dist)
continue;
if (new_dist < old_dist)
{
best_target = *ri;
best_num = 1;
}
else if (one_chance_in(++best_num))
best_target = *ri;
}
}
if (!first || best_water_count > 0)
break;
// Else start the second iteration.
first = false;
}
if (!best_water_count)
return (false);
// We're already optimally placed.
if (best_target == mon->pos())
return (true);
monster_pathfind mp;
#ifdef WIZARD
// Remove old highlighted areas to make place for the new ones.
for (rectangle_iterator ri(1); ri; ++ri)
env.pgrid(*ri) &= ~(FPROP_HIGHLIGHT);
#endif
if (mp.init_pathfind(mon, best_target))
{
mon->travel_path = mp.calc_waypoints();
if (!mon->travel_path.empty())
{
#ifdef WIZARD
for (unsigned int i = 0; i < mon->travel_path.size(); i++)
env.pgrid(mon->travel_path[i]) |= FPROP_HIGHLIGHT;
#endif
#ifdef DEBUG_PATHFIND
mprf("Found a path to (%d, %d) with %d surrounding water squares",
best_target.x, best_target.y, best_water_count);
#endif
// Okay then, we found a path. Let's use it!
mon->target = mon->travel_path[0];
mon->travel_target = MTRAV_SIREN;
return (true);
}
}
return (false);
}
bool find_wall_target(monsters *mon)
{
ASSERT(mons_wall_shielded(mon));
if (mon->travel_target == MTRAV_WALL)
{
coord_def targ_pos(mon->travel_path[mon->travel_path.size() - 1]);
// Target grid might have changed since we started, like if the
// player destroys the wall the monster wants to hide in.
if (cell_is_solid(targ_pos)
&& monster_habitable_grid(mon, grd(targ_pos)))
{
// Wall is still good.
#ifdef DEBUG_PATHFIND
mprf("%s target is (%d, %d), dist = %d",
mon->name(DESC_PLAIN, true).c_str(),
targ_pos.x, targ_pos.y, (int) (mon->pos() - targ_pos).rdist());
#endif
return (true);
}
mon->travel_path.clear();
mon->travel_target = MTRAV_NONE;
}
int best_dist = INT_MAX;
bool best_closer_to_player = false;
coord_def best_target;
for (radius_iterator ri(mon->pos(), LOS_RADIUS, true, false);
ri; ++ri)
{
if (!cell_is_solid(*ri)
|| !monster_habitable_grid(mon, grd(*ri)))
{
continue;
}
int dist = (mon->pos() - *ri).rdist();
bool closer_to_player = false;
if (dist > (you.pos() - *ri).rdist())
closer_to_player = true;
if (dist < best_dist)
{
best_dist = dist;
best_closer_to_player = closer_to_player;
best_target = *ri;
}
else if (best_closer_to_player && !closer_to_player
&& dist == best_dist)
{
best_closer_to_player = false;
best_target = *ri;
}
}
if (best_dist == INT_MAX || !in_bounds(best_target))
return (false);
monster_pathfind mp;
#ifdef WIZARD
// Remove old highlighted areas to make place for the new ones.
for (rectangle_iterator ri(1); ri; ++ri)
env.pgrid(*ri) &= ~(FPROP_HIGHLIGHT);
#endif
if (mp.init_pathfind(mon, best_target))
{
mon->travel_path = mp.calc_waypoints();
if (!mon->travel_path.empty())
{
#ifdef WIZARD
for (unsigned int i = 0; i < mon->travel_path.size(); i++)
env.pgrid(mon->travel_path[i]) |= FPROP_HIGHLIGHT;
#endif
#ifdef DEBUG_PATHFIND
mprf("Found a path to (%d, %d)", best_target.x, best_target.y);
#endif
// Okay then, we found a path. Let's use it!
mon->target = mon->travel_path[0];
mon->travel_target = MTRAV_WALL;
return (true);
}
}
return (false);
}
// Returns true if further handling neeeded.
static bool _handle_monster_travelling(monsters *mon,
const dungeon_feature_type can_move)
{
#ifdef DEBUG_PATHFIND
mprf("Monster %s reached target (%d, %d)",
mon->name(DESC_PLAIN).c_str(), mon->target.x, mon->target.y);
#endif
// Hey, we reached our first waypoint!
if (mon->pos() == mon->travel_path[0])
{
#ifdef DEBUG_PATHFIND
mpr("Arrived at first waypoint.");
#endif
mon->travel_path.erase( mon->travel_path.begin() );
if (mon->travel_path.empty())
{
#ifdef DEBUG_PATHFIND
mpr("We reached the end of our path: stop travelling.");
#endif
mon->travel_target = MTRAV_NONE;
return (true);
}
else
{
mon->target = mon->travel_path[0];
#ifdef DEBUG_PATHFIND
mprf("Next waypoint: (%d, %d)", mon->target.x, mon->target.y);
#endif
return (false);
}
}
// Can we still see our next waypoint?
if (!can_go_straight(mon->pos(), mon->travel_path[0], can_move))
{
#ifdef DEBUG_PATHFIND
mpr("Can't see waypoint grid.");
#endif
// Apparently we got sidetracked a bit.
// Check the waypoints vector backwards and pick the first waypoint
// we can see.
// XXX: Note that this might still not be the best thing to do
// since another path might be even *closer* to our actual target now.
// Not by much, though, since the original path was optimal (A*) and
// the distance between the waypoints is rather small.
int erase = -1; // Erase how many waypoints?
const int size = mon->travel_path.size();
for (int i = size - 1; i >= 0; --i)
{
if (can_go_straight(mon->pos(), mon->travel_path[i], can_move))
{
mon->target = mon->travel_path[i];
erase = i;
break;
}
}
if (erase > 0)
{
#ifdef DEBUG_PATHFIND
mprf("Need to erase %d of %d waypoints.",
erase, size);
#endif
// Erase all waypoints that came earlier:
// we don't need them anymore.
while (0 < erase--)
mon->travel_path.erase( mon->travel_path.begin() );
}
else
{
// We can't reach our old path from our current
// position, so calculate a new path instead.
monster_pathfind mp;
// The last coordinate in the path vector is our destination.
const int len = mon->travel_path.size();
if (mp.init_pathfind(mon, mon->travel_path[len-1]))
{
mon->travel_path = mp.calc_waypoints();
if (!mon->travel_path.empty())
{
mon->target = mon->travel_path[0];
#ifdef DEBUG_PATHFIND
mprf("Next waypoint: (%d, %d)",
mon->target.x, mon->target.y);
#endif
}
else
{
mon->travel_target = MTRAV_NONE;
return (true);
}
}
else
{
// Or just forget about the whole thing.
mon->travel_path.clear();
mon->travel_target = MTRAV_NONE;
return (true);
}
}
}
// Else, we can see the next waypoint and are making good progress.
// Carry on, then!
return (false);
}
static bool _choose_random_patrol_target_grid(monsters *mon)
{
const int intel = mons_intel(mon);
// Zombies will occasionally just stand around.
// This does not mean that they don't move every second turn. Rather,
// once they reach their chosen target, there's a 50% chance they'll
// just remain there until next turn when this function is called
// again.
if (intel == I_PLANT && coinflip())
return (true);
// If there's no chance we'll find the patrol point, quit right away.
if (grid_distance(mon->pos(), mon->patrol_point) > 2 * LOS_RADIUS)
return (false);
// Can the monster see the patrol point from its current position?
const bool patrol_seen = mon->mon_see_cell(mon->patrol_point,
habitat2grid(mons_primary_habitat(mon)));
if (intel == I_PLANT && !patrol_seen)
{
// Really stupid monsters won't even try to get back into the
// patrol zone.
return (false);
}
// While the patrol point is in easy reach, monsters of insect/plant
// intelligence will only use a range of 5 (distance from the patrol point).
// Otherwise, try to get back using the full LOS.
const int rad = (intel >= I_ANIMAL || !patrol_seen) ? LOS_RADIUS : 5;
const bool is_smart = (intel >= I_NORMAL);
los_def patrol(mon->patrol_point, opacity_monmove(*mon),
circle_def(rad, C_ROUND));
patrol.update();
los_def lm(mon->pos(), opacity_monmove(*mon));
if (is_smart || !patrol_seen)
{
// For stupid monsters, don't bother if the patrol point is in sight.
lm.update();
}
int count_grids = 0;
for (radius_iterator ri(mon->patrol_point, LOS_RADIUS, true, false);
ri; ++ri)
{
// Don't bother for the current position. If everything fails,
// we'll stay here anyway.
if (*ri == mon->pos())
continue;
if (!mon->can_pass_through_feat(grd(*ri)))
continue;
// Don't bother moving to squares (currently) occupied by a
// monster. We'll usually be able to find other target squares
// (and if we're not, we couldn't move anyway), and this avoids
// monsters trying to move onto a grid occupied by a plant or
// sleeping monster.
if (monster_at(*ri))
continue;
if (patrol_seen)
{
// If the patrol point can be easily (within LOS) reached
// from the current position, it suffices if the target is
// within reach of the patrol point OR the current position:
// we can easily get there.
// Only smart monsters will even attempt to move out of the
// patrol area.
// NOTE: Either of these can take us into a position where the
// target cannot be easily reached (e.g. blocked by a wall)
// and the patrol point is out of sight, too. Such a case
// will be handled below, though it might take a while until
// a monster gets out of a deadlock. (5% chance per turn.)
if (!patrol.see_cell(*ri)
&& (!is_smart || !lm.see_cell(*ri)))
{
continue;
}
}
else
{
// If, however, the patrol point is out of reach, we have to
// make sure the new target brings us into reach of it.
// This means that the target must be reachable BOTH from
// the patrol point AND the current position.
if (!patrol.see_cell(*ri)
|| !lm.see_cell(*ri))
{
continue;
}
// If this fails for all surrounding squares (probably because
// we're too far away), we fall back to heading directly for
// the patrol point.
}
bool set_target = false;
if (intel == I_PLANT && *ri == mon->patrol_point)
{
// Slightly greater chance to simply head for the centre.
count_grids += 3;
if (x_chance_in_y(3, count_grids))
set_target = true;
}
else if (one_chance_in(++count_grids))
set_target = true;
if (set_target)
mon->target = *ri;
}
return (count_grids);
}// Returns true if further handling neeeded.
static bool _handle_monster_patrolling(monsters *mon)
{
if (!_choose_random_patrol_target_grid(mon))
{
// If we couldn't find a target that is within easy reach
// of the monster and close to the patrol point, depending
// on monster intelligence, do one of the following:
// * set current position as new patrol point
// * forget about patrolling
// * head back to patrol point
if (mons_intel(mon) == I_PLANT)
{
// Really stupid monsters forget where they're supposed to be.
if (mon->friendly())
{
// Your ally was told to wait, and wait it will!
// (Though possibly not where you told it to.)
mon->patrol_point = mon->pos();
}
else
{
// Stop patrolling.
mon->patrol_point.reset();
mon->travel_target = MTRAV_NONE;
return (true);
}
}
else
{
// It's time to head back!
// Other than for tracking the player, there's currently
// no distinction between smart and stupid monsters when
// it comes to travelling back to the patrol point. This
// is in part due to the flavour of e.g. bees finding
// their way back to the Hive (and patrolling should
// really be restricted to cases like this), and for the
// other part it's not all that important because we
// calculate the path once and then follow it home, and
// the player won't ever see the orderly fashion the
// bees will trudge along.
// What he will see is them swarming back to the Hive
// entrance after some time, and that is what matters.
monster_pathfind mp;
if (mp.init_pathfind(mon, mon->patrol_point))
{
mon->travel_path = mp.calc_waypoints();
if (!mon->travel_path.empty())
{
mon->target = mon->travel_path[0];
mon->travel_target = MTRAV_PATROL;
}
else
{
// We're so close we don't even need a path.
mon->target = mon->patrol_point;
}
}
else
{
// Stop patrolling.
mon->patrol_point.reset();
mon->travel_target = MTRAV_NONE;
return (true);
}
}
}
else
{
#ifdef DEBUG_PATHFIND
mprf("Monster %s (pp: %d, %d) is now patrolling to (%d, %d)",
mon->name(DESC_PLAIN).c_str(),
mon->patrol_point.x, mon->patrol_point.y,
mon->target.x, mon->target.y);
#endif
}
return (false);
}
void set_random_target(monsters* mon)
{
mon->target = random_in_bounds(); // If we don't find anything better.
for (int tries = 0; tries < 150; ++tries)
{
coord_def delta = coord_def(random2(13), random2(13)) - coord_def(6, 6);
if (delta.origin())
continue;
const coord_def newtarget = delta + mon->pos();
if (!in_bounds(newtarget))
continue;
mon->target = newtarget;
break;
}
}
void check_wander_target(monsters *mon, bool isPacified,
dungeon_feature_type can_move)
{
// default wander behaviour
if (mon->pos() == mon->target
|| mons_is_batty(mon) || !isPacified && one_chance_in(20))
{
bool need_target = true;
if (!can_move)
{
can_move = (mons_amphibious(mon) ? DNGN_DEEP_WATER
: DNGN_SHALLOW_WATER);
}
if (mon->is_travelling())
need_target = _handle_monster_travelling(mon, can_move);
// If we still need a target because we're not travelling
// (any more), check for patrol routes instead.
if (need_target && mon->is_patrolling())
need_target = _handle_monster_patrolling(mon);
// XXX: This is really dumb wander behaviour... instead of
// changing the goal square every turn, better would be to
// have the monster store a direction and have the monster
// head in that direction for a while, then shift the
// direction to the left or right. We're changing this so
// wandering monsters at least appear to have some sort of
// attention span. -- bwr
if (need_target)
set_random_target(mon);
}
}
static void _find_all_level_exits(std::vector<level_exit> &e)
{
e.clear();
for (rectangle_iterator ri(1); ri; ++ri)
{
if (!in_bounds(*ri))
continue;
if (_is_level_exit(*ri))
e.push_back(level_exit(*ri, false));
}
}
int mons_find_nearest_level_exit(const monsters *mon,
std::vector<level_exit> &e,
bool reset)
{
if (e.empty() || reset)
_find_all_level_exits(e);
int retval = -1;
int old_dist = -1;
for (unsigned int i = 0; i < e.size(); ++i)
{
if (e[i].unreachable)
continue;
int dist = grid_distance(mon->pos(), e[i].target);
if (old_dist == -1 || old_dist >= dist)
{
// Ignore teleportation and shaft traps that the monster
// shouldn't know about.
if (!mons_is_native_in_branch(mon)
&& grd(e[i].target) == DNGN_UNDISCOVERED_TRAP)
{
continue;
}
retval = i;
old_dist = dist;
}
}
return (retval);
}
void set_random_slime_target(monsters* mon)
{
// Strictly neutral slimes will go for the nearest item.
const coord_def pos = mon->pos();
int mindist = LOS_MAX_RADIUS_SQ + 1;
for (radius_iterator ri(mon->get_los()); ri; ++ri)
{
// XXX: an iterator that spirals out would be nice.
if (!in_bounds(*ri) || distance(pos, *ri) >= mindist)
continue;
for (stack_iterator si(*ri); si; ++si)
{
item_def& item(*si);
if (is_item_jelly_edible(item))
{
mon->target = *ri;
mindist = distance(pos, *ri);
break;
}
}
}
if (mon->target == mon->pos() || mon->target == you.pos())
set_random_target(mon);
}
|