1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
#include "AppHdr.h"
#include "mon-pathfind.h"
#include "coord.h"
#include "directn.h"
#include "env.h"
#include "mon-place.h"
#include "mon-stuff.h"
#include "mon-util.h"
#include "monster.h"
#include "terrain.h"
#include "traps.h"
/////////////////////////////////////////////////////////////////////////////
// monster_pathfind
// The pathfinding is an implementation of the A* algorithm. Beginning at the
// destination square we check all neighbours of a given grid, estimate the
// distance needed for any shortest path including this grid and push the
// result into a hash. We can then easily access all points with the shortest
// distance estimates and then check _their_ neighbours and so on.
// The algorithm terminates once we reach the monster position since - because
// of the sorting of grids by shortest distance in the hash - there can be no
// path between start and target that is shorter than the current one. There
// could be other paths that have the same length but that has no real impact.
// If the hash has been cleared and the start grid has not been encountered,
// then there's no path that matches the requirements fed into monster_pathfind.
// (These requirements are usually preference of habitat of a specific monster
// or a limit of the distance between start and any grid on the path.)
int mons_tracking_range(const monsters *mon)
{
int range = 0;
switch (mons_intel(mon))
{
case I_PLANT:
range = 2;
break;
case I_INSECT:
range = 4;
break;
case I_ANIMAL:
range = 5;
break;
case I_NORMAL:
range = LOS_RADIUS;
break;
default:
// Highly intelligent monsters can find their way
// anywhere. (range == 0 means no restriction.)
break;
}
if (range)
{
if (mons_is_native_in_branch(mon))
range += 3;
else if (mons_class_flag(mon->type, M_BLOOD_SCENT))
range++;
}
return (range);
}
//#define DEBUG_PATHFIND
monster_pathfind::monster_pathfind()
: mons(NULL), start(), target(), pos(), allow_diagonals(true),
traverse_unmapped(false), range(0), min_length(0), max_length(0),
dist(), prev(), hash()
{
}
monster_pathfind::~monster_pathfind()
{
}
void monster_pathfind::set_range(int r)
{
if (r >= 0)
range = r;
}
coord_def monster_pathfind::next_pos(const coord_def &c) const
{
return c + Compass[prev[c.x][c.y]];
}
// The main method in the monster_pathfind class.
// Returns true if a path was found, else false.
bool monster_pathfind::init_pathfind(const monsters *mon, coord_def dest,
bool diag, bool msg, bool pass_unmapped)
{
mons = mon;
// We're doing a reverse search from target to monster.
start = dest;
target = mon->pos();
pos = start;
allow_diagonals = diag;
traverse_unmapped = pass_unmapped;
// Easy enough. :P
if (start == target)
{
if (msg)
mpr("The monster is already there!");
return (true);
}
return start_pathfind(msg);
}
bool monster_pathfind::init_pathfind(coord_def src, coord_def dest, bool diag,
bool msg)
{
start = src;
target = dest;
pos = start;
allow_diagonals = diag;
// Easy enough. :P
if (start == target)
return (true);
return start_pathfind(msg);
}
bool monster_pathfind::start_pathfind(bool msg)
{
// NOTE: We never do any traversable() check for the starting square
// (target). This means that even if the target cannot be reached
// we may still find a path leading adjacent to this position, which
// is desirable if e.g. the player is hovering over deep water
// surrounded by shallow water or floor, or if a foe is hiding in
// a wall.
// If the surrounding squares also are not traversable, we return
// early that no path could be found.
max_length = min_length = grid_distance(pos, target);
for (int i = 0; i < GXM; i++)
for (int j = 0; j < GYM; j++)
dist[i][j] = INFINITE_DISTANCE;
dist[pos.x][pos.y] = 0;
bool success = false;
do
{
// Calculate the distance to all neighbours of the current position,
// and add them to the hash, if they haven't already been looked at.
success = calc_path_to_neighbours();
if (success)
return (true);
// Pull the position with shortest distance estimate to our target grid.
success = get_best_position();
if (!success)
{
if (msg)
{
mprf("Couldn't find a path from (%d,%d) to (%d,%d).",
target.x, target.y, start.x, start.y);
}
return (false);
}
}
while (true);
}
// Returns true as soon as we encounter the target.
bool monster_pathfind::calc_path_to_neighbours()
{
coord_def npos;
int distance, old_dist, total;
// For each point, we look at all neighbour points. Check the orthogonals
// last, so that, should an orthogonal and a diagonal direction have the
// same total travel cost, the orthogonal will be picked first, and thus
// zigzagging will be significantly reduced.
//
// 1 0 3 This means directions are looked at, in order,
// \ | / 1, 3, 5, 7 (diagonals) followed by 0, 2, 4, 6
// 6--.--2 (orthogonals). This is achieved by the assignment
// / | \ of (dir = 0) once dir has passed 7.
// 7 4 5
//
for (int dir = 1; dir < 8; (dir += 2) == 9 && (dir = 0))
{
// Skip diagonal movement.
if (!allow_diagonals && (dir % 2))
continue;
npos = pos + Compass[dir];
#ifdef DEBUG_PATHFIND
mprf("Looking at neighbour (%d,%d)", npos.x, npos.y);
#endif
if (!in_bounds(npos))
continue;
if (!traversable(npos))
continue;
// Ignore this grid if it takes us above the allowed distance.
if (range && estimated_cost(npos) > range)
continue;
distance = dist[pos.x][pos.y] + travel_cost(npos);
old_dist = dist[npos.x][npos.y];
#ifdef DEBUG_PATHFIND
mprf("old dist: %d, new dist: %d, infinite: %d", old_dist, distance,
INFINITE_DISTANCE);
#endif
// If the new distance is better than the old one (initialised with
// INFINITE), update the position.
if (distance < old_dist)
{
// Calculate new total path length.
total = distance + estimated_cost(npos);
if (old_dist == INFINITE_DISTANCE)
{
#ifdef DEBUG_PATHFIND
mprf("Adding (%d,%d) to hash (total dist = %d)",
npos.x, npos.y, total);
#endif
add_new_pos(npos, total);
if (total > max_length)
max_length = total;
}
else
{
#ifdef DEBUG_PATHFIND
mprf("Improving (%d,%d) to total dist %d",
npos.x, npos.y, total);
#endif
update_pos(npos, total);
}
// Update distance start->pos.
dist[npos.x][npos.y] = distance;
// Set backtracking information.
// Converts the Compass direction to its counterpart.
// 0 1 2 4 5 6
// 7 . 3 ==> 3 . 7 e.g. (3 + 4) % 8 = 7
// 6 5 4 2 1 0 (7 + 4) % 8 = 11 % 8 = 3
prev[npos.x][npos.y] = (dir + 4) % 8;
// Are we finished?
if (npos == target)
{
#ifdef DEBUG_PATHFIND
mpr("Arrived at target.");
#endif
return (true);
}
}
}
return (false);
}
// Starting at known min_length (minimum total estimated path distance), check
// the hash for existing vectors, then pick the last entry of the first vector
// that matches. Update min_length, if necessary.
bool monster_pathfind::get_best_position()
{
for (int i = min_length; i <= max_length; i++)
{
if (!hash[i].empty())
{
if (i > min_length)
min_length = i;
std::vector<coord_def> &vec = hash[i];
// Pick the last position pushed into the vector as it's most
// likely to be close to the target.
pos = vec[vec.size()-1];
vec.pop_back();
#ifdef DEBUG_PATHFIND
mprf("Returning (%d, %d) as best pos with total dist %d.",
pos.x, pos.y, min_length);
#endif
return (true);
}
#ifdef DEBUG_PATHFIND
mprf("No positions for path length %d.", i);
#endif
}
// Nothing found? Then there's no path! :(
return (false);
}
// Using the prev vector backtrack from start to target to find all steps to
// take along the shortest path.
std::vector<coord_def> monster_pathfind::backtrack()
{
#ifdef DEBUG_PATHFIND
mpr("Backtracking...");
#endif
std::vector<coord_def> path;
pos = target;
path.push_back(pos);
if (pos == start)
return path;
int dir;
do
{
dir = prev[pos.x][pos.y];
pos = pos + Compass[dir];
ASSERT(in_bounds(pos));
#ifdef DEBUG_PATHFIND
mprf("prev: (%d, %d), pos: (%d, %d)", Compass[dir].x, Compass[dir].y,
pos.x, pos.y);
#endif
path.push_back(pos);
if (pos.x == 0 && pos.y == 0)
break;
}
while (pos != start);
ASSERT(pos == start);
return (path);
}
// Reduces the path coordinates to only a couple of key waypoints needed
// to reach the target. Waypoints are chosen such that from one waypoint you
// can see (and, more importantly, reach) the next one. Note that
// can_go_straight() is probably rather too conservative in these estimates.
// This is done because Crawl's pathfinding - once a target is in sight and easy
// reach - is both very robust and natural, especially if we want to flexibly
// avoid plants and other monsters in the way.
std::vector<coord_def> monster_pathfind::calc_waypoints()
{
std::vector<coord_def> path = backtrack();
// If no path found, nothing to be done.
if (path.empty())
return path;
dungeon_feature_type can_move;
if (mons_amphibious(mons))
can_move = DNGN_DEEP_WATER;
else
can_move = DNGN_SHALLOW_WATER;
std::vector<coord_def> waypoints;
pos = path[0];
#ifdef DEBUG_PATHFIND
mpr("\nWaypoints:");
#endif
for (unsigned int i = 1; i < path.size(); i++)
{
if (can_go_straight(pos, path[i], can_move))
continue;
else
{
pos = path[i-1];
waypoints.push_back(pos);
#ifdef DEBUG_PATHFIND
mprf("waypoint: (%d, %d)", pos.x, pos.y);
#endif
}
}
// Add the actual target to the list of waypoints, so we can later check
// whether a tracked enemy has moved too much, in case we have to update
// the path.
if (pos != path[path.size() - 1])
waypoints.push_back(path[path.size() - 1]);
return (waypoints);
}
bool monster_pathfind::traversable(const coord_def& p)
{
if (!traverse_unmapped && grd(p) == DNGN_UNSEEN)
return (false);
// XXX: Hack to be somewhat consistent with uses of
// opc_immob elsewhere in pathfinding.
// All of this should eventually be replaced by
// giving the monster a proper pathfinding LOS.
if (opc_immob(p) == OPC_OPAQUE)
return (false);
if (mons)
return mons_traversable(p);
return feat_has_solid_floor(grd(p));
}
// Checks whether a given monster can pass over a certain position, respecting
// its preferred habit and capability of flight or opening doors.
bool monster_pathfind::mons_traversable(const coord_def& p)
{
return (mons_can_traverse(mons, p));
}
int monster_pathfind::travel_cost(coord_def npos)
{
if (mons)
return mons_travel_cost(npos);
return (1);
}
// Assumes that grids that really cannot be entered don't even get here.
// (Checked by traversable().)
int monster_pathfind::mons_travel_cost(coord_def npos)
{
ASSERT(grid_distance(pos, npos) <= 1);
// Doors need to be opened.
if (feat_is_closed_door(grd(npos)) || grd(npos) == DNGN_SECRET_DOOR
&& env.markers.property_at(npos, MAT_ANY, "door_restict") != "veto")
{
return 2;
}
const int montype = mons_is_zombified(mons) ? mons_zombie_base(mons)
: mons->type;
const bool airborne = mons_airborne(montype, -1, false);
// Travelling through water, entering or leaving water is more expensive
// for non-amphibious monsters, so they'll avoid it where possible.
// (The resulting path might not be optimal but it will lead to a path
// a monster of such habits is likely to prefer.)
// Only tested for shallow water since they can't enter deep water anyway.
if (!airborne && !mons_class_amphibious(montype)
&& (grd(pos) == DNGN_SHALLOW_WATER || grd(npos) == DNGN_SHALLOW_WATER))
{
return 2;
}
// Try to avoid (known) traps.
const trap_def* ptrap = find_trap(npos);
if (ptrap)
{
const bool knows_trap = ptrap->is_known(mons);
const trap_type tt = ptrap->type;
if (tt == TRAP_ALARM || tt == TRAP_ZOT)
{
// Your allies take extra precautions to avoid known alarm traps.
// Zot traps are considered intraversable.
if (knows_trap && mons->friendly())
return (3);
// To hostile monsters, these traps are completely harmless.
return 1;
}
// Mechanical traps can be avoided by flying, as can shafts, and
// tele traps are never traversable anyway.
if (knows_trap && !airborne)
return 2;
}
return 1;
}
// The estimated cost to reach a grid is simply max(dx, dy).
int monster_pathfind::estimated_cost(coord_def p)
{
return (grid_distance(p, target));
}
void monster_pathfind::add_new_pos(coord_def npos, int total)
{
hash[total].push_back(npos);
}
void monster_pathfind::update_pos(coord_def npos, int total)
{
// Find hash position of old distance and delete it,
// then call_add_new_pos.
int old_total = dist[npos.x][npos.y] + estimated_cost(npos);
std::vector<coord_def> &vec = hash[old_total];
for (unsigned int i = 0; i < vec.size(); i++)
{
if (vec[i] == npos)
{
vec.erase(vec.begin() + i);
break;
}
}
add_new_pos(npos, total);
}
|