1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
#include "AppHdr.h"
#include <stdint.h>
#include "random.h"
int random_range(int low, int high)
{
ASSERT(low <= high);
return (low + random2(high - low + 1));
}
int random_range(int low, int high, int nrolls)
{
ASSERT(nrolls > 0);
const int roll = random2avg(high - low + 1, nrolls);
return low + roll;
}
// Chooses one of the numbers passed in at random. The list of numbers
// must be terminated with -1.
int random_choose(int first, ...)
{
va_list args;
va_start(args, first);
int chosen = first, count = 1, nargs = 100;
while (nargs-- > 0)
{
const int pick = va_arg(args, int);
if (pick == -1)
break;
if (one_chance_in(++count))
chosen = pick;
}
ASSERT(nargs > 0);
va_end(args);
return (chosen);
}
// Chooses one of the strings passed in at random. The list of strings
// must be terminated with NULL.
const char* random_choose_string(const char* first, ...)
{
va_list args;
va_start(args, first);
const char* chosen = first;
int count = 1, nargs = 100;
while (nargs-- > 0)
{
char* pick = va_arg(args, char*);
if (pick == NULL)
break;
if (one_chance_in(++count))
chosen = pick;
}
ASSERT(nargs > 0);
va_end(args);
return (chosen);
}
int random_choose_weighted(int weight, int first, ...)
{
va_list args;
va_start(args, first);
int chosen = first, cweight = weight, nargs = 100;
while (nargs-- > 0)
{
const int nweight = va_arg(args, int);
if (!nweight)
break;
const int choice = va_arg(args, int);
if (random2(cweight += nweight) < nweight)
chosen = choice;
}
ASSERT(nargs > 0);
va_end(args);
return (chosen);
}
#ifndef UINT32_MAX
#define UINT32_MAX ((uint32_t)(-1))
#endif
int random2(int max)
{
if (max <= 1)
return (0);
uint32_t partn = UINT32_MAX / max;
while (true)
{
uint32_t bits = random_int();
uint32_t val = bits / partn;
if (val < (uint32_t)max)
return ((int)val);
}
}
bool coinflip(void)
{
return (static_cast<bool>(random2(2)));
}
// Returns random2(x) if random_factor is true, otherwise the mean.
int maybe_random2(int x, bool random_factor)
{
if (x <= 1)
return (0);
if (random_factor)
return (random2(x));
else
return (x / 2);
}
int maybe_roll_dice(int num, int size, bool random)
{
if (random)
return (roll_dice(num, size));
else
return ((num + num * size) / 2);
}
int roll_dice(int num, int size)
{
int ret = 0;
int i;
// If num <= 0 or size <= 0, then we'll just return the default
// value of zero. This is good behaviour in that it will be
// appropriate for calculated values that might be passed in.
if (num > 0 && size > 0)
{
ret += num; // since random2() is zero based
for (i = 0; i < num; i++)
ret += random2(size);
}
return (ret);
}
int dice_def::roll() const
{
return roll_dice(this->num, this->size);
}
dice_def calc_dice(int num_dice, int max_damage)
{
dice_def ret(num_dice, 0);
if (num_dice <= 1)
{
ret.num = 1;
ret.size = max_damage;
}
else if (max_damage <= num_dice)
{
ret.num = max_damage;
ret.size = 1;
}
else
{
// Divide the damage among the dice, and add one
// occasionally to make up for the fractions. -- bwr
ret.size = max_damage / num_dice;
ret.size += x_chance_in_y(max_damage % num_dice, num_dice);
}
return (ret);
}
// Attempts to make missile weapons nicer to the player by reducing the
// extreme variance in damage done.
void scale_dice(dice_def &dice, int threshold)
{
while (dice.size > threshold)
{
dice.num *= 2;
// If it's an odd number, lose one; this is more than
// compensated by the increase in number of dice.
dice.size /= 2;
}
}
// Calculates num/den and randomly adds one based on the remainder.
int div_rand_round(int num, int den)
{
int rem = num % den;
if (rem)
return (num / den + (random2(den) < rem));
else
return (num / den);
}
int bestroll(int max, int rolls)
{
int best = 0;
for (int i = 0; i < rolls; i++)
{
int curr = random2(max);
if (curr > best)
best = curr;
}
return (best);
}
// random2avg() returns same mean value as random2() but with a lower variance
// never use with rolls < 2 as that would be silly - use random2() instead {dlb}
int random2avg(int max, int rolls)
{
int sum = random2(max);
for (int i = 0; i < (rolls - 1); i++)
sum += random2(max + 1);
return (sum / rolls);
}
// originally designed to randomise evasion -
// values are slightly lowered near (max) and
// approach an upper limit somewhere near (limit/2)
int random2limit(int max, int limit)
{
int i;
int sum = 0;
if (max < 1)
return (0);
for (i = 0; i < max; i++)
if (random2(limit) >= i)
sum++;
return (sum);
}
// Generate samples from a binomial distribution with n_trials and trial_prob
// probability of success per trial. trial_prob is a integer less than 100
// representing the % chancee of success.
// This just evaluates all n trials, there is probably an efficient way of
// doing this but I'm not much of a statistician. -CAO
int binomial_generator(unsigned n_trials, unsigned trial_prob)
{
int count = 0;
for (unsigned i = 0; i < n_trials; ++i)
if (::x_chance_in_y(trial_prob, 100))
count++;
return count;
}
bool one_chance_in(int a_million)
{
return (random2(a_million) == 0);
}
bool x_chance_in_y(int x, int y)
{
if (x <= 0)
return (false);
if (x >= y)
return (true);
return (random2(y) < x);
}
int fuzz_value(int val, int lowfuzz, int highfuzz, int naverage)
{
const int lfuzz = lowfuzz * val / 100,
hfuzz = highfuzz * val / 100;
return val + random2avg(lfuzz + hfuzz + 1, naverage) - lfuzz;
}
// This is used when the front-end randomness is inconclusive. There are
// never more than two possibilities, which simplifies things.
bool defer_rand::x_chance_in_y_contd(int x, int y, int index)
{
if (x <= 0)
return (false);
if (x >= y)
return (true);
do
{
if (index == int(bits.size()))
bits.push_back(random_int());
uint64_t expn_rand_1 = uint64_t(bits[index++]) * y;
uint64_t expn_rand_2 = expn_rand_1 + y;
uint64_t expn_minimum_fail = uint64_t(x) << 32;
if (expn_minimum_fail <= expn_rand_1)
return (false);
if (expn_rand_2 <= expn_minimum_fail)
return (true);
// y = expn_rand_2 - expn_rand_1; no-op
x = expn_minimum_fail - expn_rand_1;
} while(1);
}
int defer_rand::random2(int maxp1)
{
if (maxp1 <= 1)
return (0);
if (bits.empty())
bits.push_back(random_int());
uint64_t expn_rand_1 = uint64_t(bits[0]) * maxp1;
uint64_t expn_rand_2 = expn_rand_1 + maxp1;
int val1 = int(expn_rand_1 >> 32);
int val2 = int(expn_rand_2 >> 32);
if (val2 == val1)
return (val1);
// val2 == val1 + 1
uint64_t expn_thresh = uint64_t(val2) << 32;
return x_chance_in_y_contd(int(expn_thresh - expn_rand_1),
maxp1, 1)
? val1 : val2;
}
defer_rand& defer_rand::operator[](int i)
{
return children[i];
}
int defer_rand::random_range(int low, int high)
{
ASSERT(low <= high);
return (low + random2(high - low + 1));
}
int defer_rand::random2avg(int max, int rolls)
{
int sum = (*this)[0].random2(max);
for (int i = 0; i < (rolls - 1); i++)
sum += (*this)[i+1].random2(max + 1);
return (sum / rolls);
}
|