1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
/*
* File: ray.cc
* Summary: Diamond grid wrapper around geom::ray.
*
* The geom::grid diamonds is a checkerboard grid rotated
* by 45 degrees such that the black cells ("diamonds") lie just
* within the normal crawl map cells.
*
* ray_def provides for advancing and reflecting rays in
* map coordinates, where a ray touches a given cell if it
* meets the diamond.
*/
#include "AppHdr.h"
#include <cmath>
#include "los.h"
#include "ray.h"
#include "geom2d.h"
static geom::grid diamonds(geom::lineseq(1, 1, 0.5, 1),
geom::lineseq(1, -1, -0.5, 1));
static int _ifloor(double d)
{
return static_cast<int>(floor(d));
}
static int iround(double d)
{
return static_cast<int>(round(d));
}
static int ifloor(double d)
{
int r = iround(d);
if (double_is_zero(d - r))
return (r);
else
return (_ifloor(d));
}
static bool double_is_integral(double d)
{
return (double_is_zero(d - round(d)));
}
// Is v in the interiour of a diamond?
static bool in_diamond_int(const geom::vector &v)
{
double d1 = diamonds.ls1.index(v);
double d2 = diamonds.ls2.index(v);
return (!double_is_integral(d1) && !double_is_integral(d2)
&& (ifloor(d1) + ifloor(d2)) % 2 == 0);
}
// Is v on a grid line?
static bool on_line(const geom::vector &v)
{
double d1 = diamonds.ls1.index(v);
double d2 = diamonds.ls2.index(v);
return (double_is_integral(d1) || double_is_integral(d2));
}
// Is v an intersection of grid lines?
static bool is_corner(const geom::vector &v)
{
double d1 = diamonds.ls1.index(v);
double d2 = diamonds.ls2.index(v);
return (double_is_integral(d1) && double_is_integral(d2));
}
// Is v in a diamond?
static bool in_diamond(const geom::vector &v)
{
return (in_diamond_int(v) || is_corner(v));
}
// Is v in the interiour of a non-diamond?
static bool in_non_diamond_int(const geom::vector &v)
{
// This could instead be done like in_diamond_int.
return (!in_diamond(v) && !on_line(v));
}
static bool _to_grid(geom::ray *r, bool half);
// Is r on a corner and heading into a non-diamond?
static bool bad_corner(const geom::ray &r)
{
if (!is_corner(r.start))
return (false);
geom::ray copy = r;
_to_grid(©, true);
return (in_non_diamond_int(copy.start));
}
static coord_def floor_vec(const geom::vector &v)
{
int x = ifloor(v.x);
int y = ifloor(v.y);
return (coord_def(x, y));
}
coord_def ray_def::pos() const
{
ASSERT(_valid());
// XXX: pretty arbitrary if we're just on a corner.
return (floor_vec(r.start));
}
static void _round_to_corner(geom::ray *r)
{
geom::vector v = 2.0 * r->start;
v.x = round(v.x);
v.y = round(v.y);
ASSERT((iround(v.x) + iround(v.y)) % 2 == 1);
r->start = 0.5 * v;
}
static void _round_to_grid(geom::ray *r)
{
// x + y or x - y is of the form 0.5+k
geom::vector v = r->start;
double sum = v.x + v.y - 0.5;
double diff = v.x - v.y - 0.5;
double deltas = round(sum) - sum;
double deltad = round(diff) - diff;
if (std::abs(deltas) <= std::abs(deltad))
{
v.x += 0.5 * deltas;
v.y += 0.5 * deltas;
}
else
{
v.x += 0.5 * deltad;
v.y -= 0.5 * deltad;
}
r->start = v;
}
static bool _to_next_cell(geom::ray *r)
{
bool c = r->to_next_cell(diamonds);
if (c)
_round_to_corner(r);
return (c);
}
static bool _to_grid(geom::ray *r, bool half)
{
bool c = r->to_grid(diamonds, half);
if (!half)
_round_to_grid(r);
c = c || is_corner(r->start);
if (c)
_round_to_corner(r);
return (c);
}
static bool _advance_from_non_diamond(geom::ray *r)
{
ASSERT(in_non_diamond_int(r->start));
if (!_to_next_cell(r))
{
ASSERT(in_diamond_int(r->start));
return (false);
}
else
{
// r is now on a corner, going from non-diamond to non-diamond.
ASSERT(is_corner(r->start));
return (true);
}
}
// The ray is in a legal state to be passed around externally.
bool ray_def::_valid() const
{
return (on_corner && is_corner(r.start) && bad_corner(r)
|| !on_corner && in_diamond_int(r.start));
}
static geom::vector _normalize(const geom::vector &v)
{
double n = sqrt(v.x*v.x + v.y*v.y);
return ((1.0 / n) * v);
}
// Return true if we didn't hit a corner, hence if this
// is a good ray so far.
bool ray_def::advance()
{
ASSERT(_valid());
r.dir = _normalize(r.dir);
if (on_corner)
{
ASSERT (is_corner(r.start));
on_corner = false;
_to_grid(&r, true);
}
else
{
// Starting inside a diamond.
bool c = _to_next_cell(&r);
if (c)
{
// r is now on a corner, going from diamond to diamond.
_to_grid(&r, true);
ASSERT(_valid());
return (true);
}
}
// Now inside a non-diamond.
ASSERT(in_non_diamond_int(r.start));
on_corner = _advance_from_non_diamond(&r);
ASSERT(_valid());
return (!on_corner);
}
void ray_def::regress()
{
ASSERT(_valid());
r.dir = -r.dir;
advance();
r.dir = -r.dir;
ASSERT(_valid());
}
static geom::vector _mirror_pt(const geom::vector &vorig, const coord_def &side)
{
geom::vector v = vorig;
if (side.x == -1)
v.x = 1.0 - v.x;
if (side.y == -1)
v.y = 1.0 - v.y;
return (v);
}
static geom::vector _mirror_dir(const geom::vector &vorig, const coord_def &side)
{
geom::vector v = vorig;
if (side.x == -1)
v.x = -v.x;
if (side.y == -1)
v.y = -v.y;
return (v);
}
static geom::ray _mirror(const geom::ray &rorig, const coord_def &side)
{
geom::ray r;
r.start = _mirror_pt(rorig.start, side);
r.dir = _mirror_dir(rorig.dir, side);
return (r);
}
static geom::line _choose_reflect_line(bool rx, bool ry, bool rxy)
{
geom::line l;
if (rxy)
{
if (rx && ry)
{
// x + y = 1.5
l.f = geom::form(1, 1);
l.val = 1.5;
}
else if (!rx && !ry)
{
// x + y = 2.5
l.f = geom::form(1, 1);
l.val = 2.5;
}
else if (rx)
{
// x = 1
l.f = geom::form(1, 0);
l.val = 1;
}
else if (ry)
{
// y = 1
l.f = geom::form(0, 1);
l.val = 1;
}
}
else if (rx)
{
// Flattened corners: y = x - 0.5
// l.f = geom::form(1, -1);
// l.val = 0.5;
// Instead like rxy && rx: x = 1
l.f = geom::form(1, 0);
l.val = 1;
}
else // ry
{
// y = x + 0.5
// l.f = geom::form(1, -1);
// l.val = -0.5;
l.f = geom::form(0, 1);
l.val = 1;
}
return (l);
}
static geom::vector _fudge_corner(const geom::vector &w, const reflect_grid &rg)
{
geom::vector v = w;
if (double_is_integral(v.x))
{
// just try both sides
v.x += 10 * EPSILON_VALUE;
if (rg(floor_vec(v)))
v.x -= 20 * EPSILON_VALUE;
ASSERT(!rg(floor_vec(v)));
}
else
{
ASSERT(double_is_integral(v.y));
v.y += 10 * EPSILON_VALUE;
if (rg(floor_vec(v)))
v.y -= 20 * EPSILON_VALUE;
ASSERT(!rg(floor_vec(v)));
}
return (v);
}
// Bounce a ray leaving (0,0) through the positive side
// along a diagonal corridor between (0,1) and (1,0) until
// it's inside (1,1).
static geom::ray _bounce_diag_corridor(const geom::ray &rorig)
{
geom::ray r = rorig;
geom::form wall(1, -1);
// The actual walls: geom::line l1(1, -1, 0.5), l2(1, -1, -0.5);
geom::line k(1, 1, 2.5);
ASSERT(k.f(r.dir) > 0); // We're actually moving towards k.
ASSERT(!geom::parallel(r.dir, geom::form(1, -1)));
// Now bounce back and forth between l1 and l2 until we hit k.
while (!double_is_zero(geom::intersect(r, k)))
{
_to_grid(&r, false);
r.dir = reflect(r.dir, wall);
}
// Now pointing inside the destination cell (1,1) -- move inside.
_to_grid(&r, true);
return (r);
}
// Bounce a ray leaving (0,0) properly through one of the sides
// of the diamond.
// r is positioned on the edge already, and side says which
// side this is.
static geom::ray _bounce_noncorner(const geom::ray &r, const coord_def &side,
const reflect_grid &rg)
{
// Mirror r to have it leave through the positive side.
geom::ray rmirr = _mirror(r, side);
// Determine which of the three relevant cells are bouncy.
const coord_def dx = coord_def(side.x, 0);
const coord_def dy = coord_def(0, side.y);
bool rx = rg(dx);
bool ry = rg(dy);
bool rxy = rg(dx + dy);
// One of the three neighbours on this side must be bouncy.
ASSERT(rx || ry || rxy);
// Now go through the cases separately.
if (rx && ry && !rxy)
{
rmirr = _bounce_diag_corridor(rmirr);
}
else
{
// These all reduce to reflection at one line.
geom::line l = _choose_reflect_line(rx, ry, rxy);
double t = intersect(rmirr, l);
ASSERT(double_is_zero(t) || t >= 0);
rmirr.advance(t);
rmirr.dir = geom::reflect(rmirr.dir, l.f);
if (bad_corner(rmirr))
{
// Really want to stay and set on_corner.
// But then pos() might be a solid cell.
geom::vector v = _mirror_pt(rmirr.start, side);
v = _fudge_corner(v, rg);
rmirr.start = _mirror_pt(v, side);
}
else
{
// Depending on the case, we're on some diamond edge
// or between diamonds. We'll just move safely into
// the next one.
_to_grid(&rmirr, true);
if (in_non_diamond_int(rmirr.start))
_advance_from_non_diamond(&rmirr);
}
}
// Mirror back.
return (_mirror(rmirr, side));
}
static geom::form _corner_wall(const coord_def &side, const reflect_grid &rg)
{
coord_def e;
if (side.x == 0)
e = coord_def(1, 0);
else
e = coord_def(0, 1);
ASSERT(!rg(coord_def(0,0)) && rg(side));
// Reflect back by an orthogonal wall...
coord_def wall = e;
// unless the wall is clearly diagonal:
// ##.
// #*. (with side.y == -1)
if (rg(e) && rg(side+e) && !rg(-e) && !rg(side-e))
{
// diagonal wall through side and e
wall = side - e;
}
else if (rg(-e) && rg(side-e) && !rg(e) && !rg(side+e))
{
// diagonal wall through side and -e
wall = side + e;
}
return (geom::form(wall.y, -wall.x));
}
// Bounce a ray that leaves cell (0,0) through a corner. We could
// just fudge it a little, but want to be consistent for rays
// shot in cardinal directions.
static geom::ray _bounce_corner(const geom::ray &rorig, const coord_def &side,
const reflect_grid &rg)
{
geom::ray r = rorig;
geom::form f = _corner_wall(side, rg);
if (r.dir.x == 0 || r.dir.y == 0)
{
// To keep cardinal rays nicely in the middle,
// we reflect them earlier.
r.start.x = r.start.y = 0.5;
r.dir = geom::reflect(r.dir, f);
ASSERT(r.dir.x == 0 || r.dir.y == 0);
}
else
{
// Others are reflected at the corner.
r.dir = geom::reflect(r.dir, f);
if (f.a != 0 && f.b != 0)
{
// Diagonal wall: to the next diamond, then inside.
_to_grid(&r, false);
_to_grid(&r, true);
}
else
{
// Back inside diamond (0,0).
_to_grid(&r, true);
}
}
return (r);
}
void ray_def::bounce(const reflect_grid &rg)
{
ASSERT(_valid());
ASSERT(!rg(coord_def(0,0))); // The cell we bounce from is not solid.
#ifdef ASSERTS
const coord_def old_pos = pos();
#endif
// Translate to cell (0,0).
geom::vector p(pos().x, pos().y);
geom::ray rtrans;
rtrans.start = r.start - p;
rtrans.dir = r.dir;
if (on_corner)
{
// Move a little bit towards cell center (0.5, 0.5).
rtrans.start = 0.9 * rtrans.start + 0.1 * geom::vector(0.5, 0.5);
on_corner = false;
ASSERT(in_diamond_int(rtrans.start));
}
// Move to the diamond edge to determine the side.
coord_def side;
bool corner = _to_grid(&rtrans, false);
double d1 = diamonds.ls1.index(rtrans.start);
if (double_is_integral(d1))
side += iround(d1) ? coord_def(1,1) : coord_def(-1,-1);
double d2 = diamonds.ls2.index(rtrans.start);
if (double_is_integral(d2))
side += iround(d2) ? coord_def(1,-1) : coord_def(-1,1);
ASSERT(corner == (side.x == 0 || side.y == 0));
// In the corner case, we have side == (+-2, 0) or (0, +-2); reduce:
if (corner)
{
side.x = side.x / 2;
side.y = side.y / 2;
}
if (corner)
rtrans = _bounce_corner(rtrans, side, rg);
else
rtrans = _bounce_noncorner(rtrans, side, rg);
// Translate back.
r.start = rtrans.start + p;
r.dir = rtrans.dir;
// Set on_corner if we happen to have ended up on a corner.
on_corner = is_corner(r.start);
ASSERT(_valid());
ASSERT(!rg(pos() - old_pos));
}
double ray_def::get_degrees() const
{
return (geom::degrees(r.dir));
}
void ray_def::set_degrees(double d)
{
r.dir = geom::degree_to_vector(d);
}
|