1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/*
SHA256 hardening of PRNG written by Mikko Juola. This hashes MT-generated values (in 256 bit
blocks) with SHA256 and uses the results as random values (in 32 bit blocks).
sha256_genrand() generates cryptographically secure random numbers.
*/
#include "AppHdr.h"
#include <stdint.h>
typedef uint32_t u32;
#include "mt19937ar.h"
#ifdef MORE_HARDENED_PRNG
#include <stack>
#include <cstring>
#include <cstdio>
#include <cstdlib>
typedef struct
{
char output[32];
} sha256state;
const u32 h[] = { 0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19 };
const u32 k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 };
#define LSHIFT(value, bits) ( ((value) << (bits)) & 0xfffffffe )
#define RSHIFT(value, bits) ( ((value) >> (bits)) & 0x7fffffff )
#define LROTATE(value, bits) ( LSHIFT(value, bits) | RSHIFT(value, (sizeof(value) << 3) - (bits)) )
#define RROTATE(value, bits) ( RSHIFT(value, bits) | LSHIFT(value, (sizeof(value) << 3) - (bits)) )
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
void sha256chunk(const char* chunk, sha256state* ss);
// Only first 64 bytes of in_msg are used, if in_msg_len is greater than that.
// No padding is done. Result is undefined if in_msg and out_msg overlap.
void sha256(const char* in_msg, size_t in_msg_len, char* out_msg)
{
sha256state* ss = (sha256state*) out_msg;
for (int i1 = 0; i1 < 8; i1++)
STORE32H(h[i1], &ss->output[i1 << 2]);
if (in_msg_len < 64)
{
char chunk[64];
memset(chunk, 0, 64);
memcpy(chunk, in_msg, in_msg_len);
sha256chunk(chunk, ss);
return;
}
sha256chunk(in_msg, ss);
}
void sha256chunk(const char* chunk, sha256state* ss)
{
u32 chunk_out[8];
u32 w[64];
u32 s0, s1, maj, t1, t2, ch;
size_t i1;
for (i1 = 0; i1 < 16; i1 ++)
LOAD32H(w[i1], &chunk[i1 << 2]);
for (i1 = 16; i1 < 64; i1++)
{
s0 = RROTATE(w[i1-15], 7) ^ RROTATE(w[i1-15], 18) ^ RSHIFT(w[i1-15], 3);
s1 = RROTATE(w[i1-2], 17) ^ RROTATE(w[i1-2], 19) ^ RSHIFT(w[i1-2], 10);
w[i1] = w[i1-16] + s0 + w[i1-7] + s1;
}
for (i1 = 0; i1 < 8; i1++)
LOAD32H(chunk_out[i1], &ss->output[i1 << 2]);
for (i1 = 0; i1 < 64; i1++)
{
s0 = RROTATE(chunk_out[0], 2) ^ RROTATE(chunk_out[0], 13) ^ RROTATE(chunk_out[0], 22);
maj = (chunk_out[0] & chunk_out[1]) ^ (chunk_out[0] & chunk_out[2]) ^ (chunk_out[1] & chunk_out[2]);
t2 = s0 + maj;
s1 = RROTATE(chunk_out[4], 6) ^ RROTATE(chunk_out[4], 11) ^ RROTATE(chunk_out[4], 25);
ch = (chunk_out[4] & chunk_out[5]) ^ ((~chunk_out[4]) & chunk_out[6]);
t1 = chunk_out[7] + s1 + ch + k[i1] + w[i1];
chunk_out[7] = chunk_out[6];
chunk_out[6] = chunk_out[5];
chunk_out[5] = chunk_out[4];
chunk_out[4] = chunk_out[3] + t1;
chunk_out[3] = chunk_out[2];
chunk_out[2] = chunk_out[1];
chunk_out[1] = chunk_out[0];
chunk_out[0] = t1 + t2;
}
for (i1 = 0; i1 < 8; i1++)
{
u32 temp;
LOAD32H(temp, &ss->output[i1 << 2]);
temp += chunk_out[i1];
STORE32H(temp, &ss->output[i1 << 2]);
}
}
struct sha256mt_state
{
// 256 bits
u32 mt_sha256_block[8], mt_block[8];
u32 mt_block_index;
sha256mt_state()
{
mt_block_index = 0;
}
};
sha256mt_state effective_state;
std::stack<sha256mt_state> sha256mt_state_stack;
void reset_sha256_state()
{
effective_state.mt_block_index = 0;
}
void push_sha256_state()
{
sha256mt_state_stack.push(effective_state);
push_mt_state();
}
void pop_sha256_state()
{
if (sha256mt_state_stack.empty())
return;
effective_state = sha256mt_state_stack.top();
sha256mt_state_stack.pop();
pop_mt_state();
}
unsigned long sha256_genrand()
{
u32 &mt_block_index = effective_state.mt_block_index;
u32 *mt_sha256_block = effective_state.mt_sha256_block;
u32 *mt_block = effective_state.mt_block;
// Needs some hashing
if (!(mt_block_index % 8))
{
mt_block_index = 0;
mt_block[0] = genrand_int32();
mt_block[1] = genrand_int32();
mt_block[2] = genrand_int32();
mt_block[3] = genrand_int32();
mt_block[4] = genrand_int32();
mt_block[5] = genrand_int32();
mt_block[6] = genrand_int32();
mt_block[7] = genrand_int32();
// This kind of casting from char to 32-bit values gives different
// results on different endianess platforms but we are talking
// about random numbers here so let's leave it simple.
sha256((char*) mt_block, 32, (char*) mt_sha256_block);
}
return mt_sha256_block[mt_block_index++];
}
#else // MORE_HARDENED_PRNG
// Stub these to MT functions
void push_sha256_state()
{
push_mt_state();
}
void pop_sha256_state()
{
pop_mt_state();
}
void reset_sha256_state()
{
}
unsigned long sha256_genrand()
{
return genrand_int32();
}
#endif
#ifdef NEVER
/*
Simple correctness test, should print this:
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
(the hash of an empty string, on unix systems try writing sha256sum and ctrl-d
*/
#include <cstdio>
#include <cstdlib>
int main(int argc, char* argv[])
{
char msg[1];
msg[0] = 0x80;
char sha256out[32];
memset(sha256out, 0, 32);
sha256(msg, 1, sha256out);
for (int i1 = 0; i1 < 32; i1++)
printf("%x", (unsigned char) sha256out[i1]);
printf("\n");
return 0;
}
#endif
#ifdef SPEEDTEST
/* Generates 100000000 MT-generated, SHA256 hashed 32-bit random numbers if
there are no arguments.
Generates 100000000 MT-generated 32-bit random numbers if argument is '1'
*/
/* That's hundred million */
#define NUMBERS 100000000
#include <cstdio>
#include <cstdlib>
#include <sys/time.h>
#include <time.h>
int main(int argc, char* argv[])
{
bool sha256test = true;
if (argc > 1 && argv[1][0] == '1')
sha256test = false;
init_genrand(time(0));
if (sha256test)
{
for (unsigned int i1 = 0; i1 < NUMBERS; i1++)
sha256_genrand();
return 0;
}
for (unsigned int i1 = 0; i1 < NUMBERS; i1++)
genrand_int32();
return 0;
}
#endif
#ifdef DIEHARD
/* When run, just outputs binary 4-byte random values. Useful for diehard tests */
/* If MORE_HARDENED_PRNG is not defined, it will use MT directly instead (because
sha256 is not even compiled without that */
int main(int argc, char* argv[])
{
init_genrand(time(0));
while(true)
{
u32 value = sha256_genrand();
fwrite(&value, sizeof(u32), 1, stdout);
}
return 0;
}
#endif
|