File: rnmath.tcl

package info (click to toggle)
critcl 3.3.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,680 kB
  • sloc: ansic: 41,058; tcl: 12,090; sh: 7,230; pascal: 3,456; asm: 3,058; ada: 1,681; cpp: 1,001; cs: 879; makefile: 333; perl: 104; xml: 95; f90: 10
file content (375 lines) | stat: -rw-r--r-- 9,504 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# -*- tcl -*- (critcl actually, Tcl + embedded C)
# rnmath.tcl --
#
#	Low-level functions for the generation of random numbers
#	following various distributions (Poisson, Gaussian/Normal,
#	etc.).
#
# Math pulled out of and derived from tcllib/modules/simulation/random.tcl
# Copyright (c) 2007 by Arjen Markus <arjenmarkus@users.sourceforge.net>
#     Note:
#     Several formulae and algorithms come from "Monte Carlo Simulation"
#     by C. Mooney (Sage Publications, 1997)
#
# Critcl code generation and setup
# Copyright (c) 2011,2022 by Andreas Kupries <andreas_kupris@users.sourceforge.net>
#
# Example of how to EXPORT a C-level stubs API through critcl v3.

# # ## ### ##### ######## ############# #####################
## Requirements

package require Tcl 8.6 9
package require critcl 3.2

# # ## ### ##### ######## ############# #####################
## Configuration

critcl::license \
    {Arjen Markus, Andreas Kupries} \
    {BSD licensed.}

critcl::summary {C-level functions for the generation of random numbers.}

critcl::description {
    This package implements functions for the generation
    of random values following various known probability
    distribution. No Tcl-binding is provided. See package
    'random' for that.
}

critcl::subject {random numbers}
# plus the distributions, see inside of 'generator'

# # ## ### ##### ######## ############# #####################
## Code generation helper command converting a simple RNG declaration
## into the necessary C code.

proc generator {name parameters body rtypes} {
    # Generator results are returned through pointer arguments coming
    # after the generator parameters.
    foreach {t r} $rtypes {
	lappend parameters ${t}* $r
    }

    set fname      rnmath_$name
    set cparameters [join [critcl::argcsignature $parameters] {, }]

    # Low-level math function generating the numbers.

    lappend map @fname@ $fname
    lappend map @param@ $cparameters
    lappend map @body@  $body
    critcl::ccode [string map $map {void @fname@ (@param@) {@body@}}]

    # Exported through a stubs table.
    critcl::api function void $fname $parameters

    # Extend the meta data.
    critcl::subject "$name probability distribution"
    critcl::subject "probability distribution $name"
    critcl::subject "distribution $name"
    return
}

# # ## ### ##### ######## ############# #####################
## Intro and shared/common/fixed code.

critcl::ccode {
    /* -*- c -*- */

#include <math.h>

#ifndef M_PI
#define M_PI (3.141592653589793238462643)
#endif

    static double
    RANDOM (void)
    {
	/* Random numbers in range [0,1) */
#ifdef WIN32
	return ((unsigned int)  rand   ()) / 2147483648.0;
#else
	return ((unsigned long) random ()) / 2147483648.0;
#endif
    }
}

# # ## ### ##### ######## ############# #####################
## Generators ...

# Bernoulli --
#     Produce random numbers with a Bernoulli distribution
#
# Arguments:
#     p         Probability that the outcome will be 1
#
# Result:
#     Name of a procedure that returns a Bernoulli-distributed random number
#

generator bernoulli {double p} {
    *v = (RANDOM () < p) ? 1 : 0;
} {int v}

# Uniform --
#     Produce random numbers with a uniform distribution in a given range
#
# Arguments:
#     min       Minimum value
#     max       Maximum value
#
# Result:
#     Name of a procedure that returns a uniformly distributed
#     random number
#

generator uniform {double min double max} {
    *v = min + (max-min) * RANDOM ();
} {double v}

# Exponential --
#     Produce random numbers with an exponential distribution with given mean
#
# Arguments:
#     min       Minimum value
#     mean      Mean value
#
# Result:
#     Name of a procedure that returns an exponentially distributed
#     random number
#

generator exponential {double min double mean} {
    *v = min + (mean-min)*log(RANDOM ());
} {double v}

# Discrete --
#     Produce random numbers with a uniform but discrete distribution
#
# Arguments:
#     n         Outcome is an integer between 0 and n-1
#
# Result:
#     Name of a procedure that returns such a random number
#

generator discrete {int n} {
    *v = (int) (n*RANDOM ());
} {int v}

# Poisson --
#     Produce random numbers with a Poisson distribution
#
# Arguments:
#     lambda    The one parameter of the Poisson distribution
#
# Result:
#     Name of a procedure that returns such a random number
#

generator poisson {double lambda} {
    double r       = RANDOM ();
    int    number  = 0;
    double sum     = exp(-lambda);
    double rfactor = sum;

    while (r > sum) {
	rfactor *= lambda / (number + 1);
	sum += rfactor;
	number ++;
    }

    *v = number;
} {int v}

# Normal --
#     Produce random numbers with a normal distribution
#
# Arguments:
#     mean      Mean of the distribution
#     stdev     Standard deviation of the distribution
#
# Result:
#     Name of a procedure that returns such a random number
#
# Note:
#     Use the Box-Mueller method to generate a normal random number
#

generator normal {double mean double sigma} {
    /* Note: RANDOM () in [0,1); log < 0 for that interval */
    double rad = sqrt (-2 * log (RANDOM ()));
    double phi = 2 * M_PI * RANDOM ();
    double r   = rad * cos (phi);

    *v = mean + r*sigma;
} {double v}

# Pareto --
#     Produce random numbers with a Pareto distribution
#
# Arguments:
#     min       Minimum value for the distribution
#     steep     Steepness of the descent (> 0!)
#
# Result:
#     Name of a procedure that returns a Pareto-distributed number
#

generator pareto {double min double steepness} {
    *v = min * pow (1. - RANDOM (), 1./steepness);
} {double v}

# Gumbel --
#     Produce random numbers with a Gumbel distribution
#
# Arguments:
#     min       Minimum value for the distribution
#     f         Factor to scale the value
#
# Result:
#     Name of a procedure that returns a Gumbel-distributed number
#
# Note:
#     The chance P(v) = exp( -exp( f*(v-min) ) )
#

generator gumbel {double min double f} {
    *v = min + log ( -log (1. - RANDOM ()) / f);
} {double v}

# chiSquared --
#     Produce random numbers with a chi-squared distribution
#
# Arguments:
#     df        Degrees of freedom
#
# Result:
#     Name of a procedure that returns a chi-squared distributed number
#     with mean 0 and standard deviation 1
#

generator chisquared {int df} {
    double y = 0;
    int i;

    for (i = 0; i < df; i++) {
      double rad = sqrt (-log (RANDOM ()));
      double phi = 2 * M_PI * RANDOM ();
      double r   = rad * cos (phi);
      /* So far like a normal distribution */
      y += r * r;
    }

    /* http://www.dsplog.com/2008/07/28/chi-square-random-variable/ */

    *v = (y - df)/sqrt (2*df);
} {double v}

# Disk --
#     Produce random numbers with a uniform distribution of points on a disk
#
# Arguments:
#     rad       Radius of the disk
#
# Result:
#     Name of a procedure that returns the x- and y-coordinates of
#     such a random point
#

generator disk {double radius} {
    double rad = radius * sqrt (RANDOM ());
    double phi = 2 * M_PI * RANDOM ();

    *x   = rad * cos (phi);
    *y   = rad * sin (phi);
} {double x double y}

# Ball --
#     Produce random numbers with a uniform distribution of points within a ball
#
# Arguments:
#     rad       Radius of the ball
#
# Result:
#     Name of a procedure that returns the x-, y- and z-coordinates of
#     such a random point
#

generator ball {double radius} {
    double rad   = radius * pow (RANDOM (), 1./3.);
    double phi   = 2 * M_PI * RANDOM ();
    double theta = acos ( 2 * RANDOM () - 1);

    *x   = rad * cos (phi) * cos (theta);
    *y   = rad * sin (phi) * cos (theta);
    *z   = rad * sin (theta);
} {double x double y double z}

# Sphere --
#     Produce random numbers with a uniform distribution of points on the surface
#     of a sphere
#
# Arguments:
#     rad       Radius of the sphere
#
# Result:
#     Name of a procedure that returns the x-, y- and z-coordinates of
#     such a random point
#

generator sphere {double radius} {
    double phi   = 2 * M_PI * RANDOM ();
    double theta = acos ( 2 * RANDOM () - 1);

    *x   = radius * cos (phi) * cos (theta);
    *y   = radius * sin (phi) * cos (theta);
    *z   = radius * sin (theta);
} {double x double y double z}

# Rectangle --
#     Produce random numbers with a uniform distribution of points in a rectangle
#
# Arguments:
#     length    Length of the rectangle (x-direction)
#     width     Width of the rectangle (y-direction)
#
# Result:
#     Name of a procedure that returns the x- and y-coordinates of
#     such a random point
#

generator rectangle {double length double width} {
    *x   = length * RANDOM ();
    *y   = width  * RANDOM ();
} {double x double y}

# Block --
#     Produce random numbers with a uniform distribution of points in a block
#
# Arguments:
#     length    Length of the block (x-direction)
#     width     Width of the block (y-direction)
#     depth     Depth of the block (y-direction)
#
# Result:
#     Name of a procedure that returns the x-, y- and z-coordinates of
#     such a random point
#

generator block {double length double width double depth} {
    *x   = length * RANDOM ();
    *y   = width  * RANDOM ();
    *z   = depth  * RANDOM ();
} {double x double y double z}


# # ## ### ##### ######## ############# #####################
## Finalization; drop the helper command, and provide the package.

rename generator {}

package provide rnmath 1
return