1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
|
// crm_osbf_bayes.c - OSBF Bayes classifier
// Copyright 2004 Fidelis Assis
// Copyright 2004-2009 William S. Yerazunis.
// This file is under GPLv3, as described in COPYING.
// This is the OSBF-Bayes classifier. It differs from SBPH-Markovian
// and OSB-Bayes in the way P(F|C) is estimated. See function
// crm_expr_osbf_bayes_classify, below, for details.
// -- Fidelis Assis - 2004/10/20
// include some standard files
#include "crm114_sysincludes.h"
// include any local crm114 configuration file
#include "crm114_config.h"
// include the crm114 data structures file
#include "crm114_structs.h"
// include the routine declarations file
#include "crm114.h"
// include OSBF structures
#include "crm114_osbf.h"
// the globals used when we need a big buffer - allocated once, used
// wherever needed. These are sized to the same size as the data window.
extern char *tempbuf;
////////////////////////////////////////////////////////////////////
//
// the hash coefficient table (hctable) should be full of relatively
// prime numbers, and preferably superincreasing, though both of those
// are not strict requirements.
//
static long hctable[] = { 1, 7,
3, 13,
5, 29,
11, 51,
23, 101,
47, 203,
97, 407,
197, 817,
397, 1637,
797, 3277
};
// Where does the nominative data start?
static unsigned long spectra_start;
/* structure for token searching */
struct token_search
{
unsigned char *ptok;
unsigned long toklen;
unsigned long hash;
unsigned char *max_ptok;
const char *pattern;
regex_t *regcb;
unsigned max_long_tokens;
};
/************************************************************/
static int
get_next_token (struct token_search *pts)
{
unsigned char *p_end = NULL; /* points to end of the token */
int error = 0; /* default: no error */
if (pts->pattern[0] != '\0')
{
regmatch_t match[5];
if (pts->ptok < pts->max_ptok)
{
error = crm_regexec (pts->regcb, (char *) pts->ptok,
pts->max_ptok - pts->ptok, 5, match, 0, NULL);
if (error == REG_NOMATCH)
{
match[0].rm_so = 0;
match[0].rm_eo = 0;
error = 0;
}
/* fprintf(stderr, "%s %ld %ld\n", pts->pattern, match[0].rm_so, match[0].rm_eo); */
}
else
{
match[0].rm_so = 0;
match[0].rm_eo = 0;
}
if (error == 0)
{
p_end = pts->ptok + match[0].rm_eo;
pts->ptok += match[0].rm_so;
}
}
else
{
/* find nongraph delimited token */
p_end = pts->ptok;
while ((pts->ptok < pts->max_ptok) && !isgraph ((int) *pts->ptok))
pts->ptok++;
p_end = pts->ptok;
while ((p_end < pts->max_ptok) && isgraph ((int) *p_end))
p_end++;
}
if (error == 0)
{
/* update token length */
pts->toklen = p_end - pts->ptok;
}
/* return error status */
/*
{
unsigned long i = 0;
while (error == 0 && i < pts->toklen)
fputc (pts->ptok[i++], stderr);
fprintf (stderr, " %lu", pts->toklen);
}
*/
return error;
}
/*****************************************************************/
static unsigned long
get_next_hash (struct token_search *pts)
{
unsigned long hash_acc = 0;
unsigned long count_long_tokens = 0;
int error;
/* get next token */
error = get_next_token (pts);
/* long tokens, probably base64 lines */
while (error == 0 && pts->toklen > OSBF_MAX_TOKEN_SIZE &&
count_long_tokens < pts->max_long_tokens)
{
count_long_tokens++;
/* XOR new hash with previous one */
hash_acc ^= strnhash ((char *) pts->ptok, pts->toklen);
/* fprintf (stderr, " %0lX +\n ", hash_acc); */
/* advance the pointer and get next token */
pts->ptok += pts->toklen;
error = get_next_token (pts);
}
if (error == 0)
{
if (pts->toklen > 0 || count_long_tokens > 0)
{
hash_acc ^= strnhash ((char *) pts->ptok, pts->toklen);
/* fprintf (stderr, " %0lX %lu\n", hash_acc, pts->toklen); */
pts->hash = hash_acc;
}
else
{
/* no more hashes */
/* fprintf (stderr, "End of text %0lX %lu\n", hash_acc, pts->toklen); */
error = 1;
}
}
return error;
}
/*****************************************************************/
// How to learn Osb_Bayes style - in this case, we'll include the single
// word terms that may not strictly be necessary.
//
int
crm_expr_osbf_bayes_learn (CSL_CELL * csl, ARGPARSE_BLOCK * apb,
char *txtptr, long txtstart, long txtlen)
{
// learn the osb_bayes transform spectrum of this input window as
// belonging to a particular type.
// learn <flags> (classname) /word/
//
long i, j, k;
long h; // h is our counter in the hashpipe;
char ptext[MAX_PATTERN]; // the regex pattern
long plen;
char htext[MAX_PATTERN]; // the hash name
long hlen;
long cflags, eflags;
struct stat statbuf; // for statting the hash file
OSBF_FEATUREBUCKET_STRUCT *hashes; // the text of the hash file
OSBF_FEATURE_HEADER_STRUCT *header; // header of the hash file
//char *seen_features;
unsigned int hashpipe[OSB_BAYES_WINDOW_LEN + 1];
regex_t regcb;
long textoffset;
long textmaxoffset;
long sense;
long fev;
char *fname;
struct token_search ts;
/* fprintf(stderr, "Starting learning...\n"); */
if (user_trace)
fprintf (stderr, "OSBF Learn\n");
if (internal_trace)
fprintf (stderr, "executing a LEARN\n");
// Keep the gcc compiler from complaining about unused variables
// i = hctable[0];
// extract the hash file name
crm_get_pgm_arg (htext, MAX_PATTERN, apb->p1start, apb->p1len);
hlen = apb->p1len;
hlen = crm_nexpandvar (htext, hlen, MAX_PATTERN);
// get the "this is a word" regex
ptext[0] = '\0'; // start with empty regex
crm_get_pgm_arg (ptext, MAX_PATTERN, apb->s1start, apb->s1len);
plen = apb->s1len;
plen = crm_nexpandvar (ptext, plen, MAX_PATTERN);
// set our cflags, if needed. The defaults are
// "case" and "affirm", (both zero valued).
// and "microgroom" disabled.
cflags = REG_EXTENDED;
eflags = 0;
sense = +1;
if (apb->sflags & CRM_NOCASE)
{
cflags = cflags | REG_ICASE;
eflags = 1;
if (user_trace)
fprintf (stderr, "turning oncase-insensitive match\n");
};
if (apb->sflags & CRM_REFUTE)
{
sense = -sense;
if (user_trace)
fprintf (stderr, " refuting learning\n");
};
if (apb->sflags & CRM_MICROGROOM)
{
// enable microgroom
crm_osbf_set_microgroom(1);;
// if not set by command line, use default
if (microgroom_chain_length == 0)
microgroom_chain_length = OSBF_MICROGROOM_CHAIN_LENGTH;
// if not set by command line, use default
if (microgroom_stop_after == 0)
microgroom_stop_after = OSBF_MICROGROOM_STOP_AFTER;
if (user_trace)
fprintf (stderr, " enabling microgrooming.\n");
}
else
{
// disable microgroom
crm_osbf_set_microgroom(0);
}
//
// grab the filename, and stat the file
// note that neither "stat", "fopen", nor "open" are
// fully 8-bit or wchar clean...
i = 0;
while (htext[i] < 0x021)
i++;
j = i;
while (htext[j] >= 0x021)
j++;
// filename starts at i, ends at j. null terminate it.
htext[j] = '\000';
// and stat it to get it's length
k = stat (&htext[i], &statbuf);
// quick check- does the file even exist?
if (k != 0)
{
if (crm_osbf_create_cssfile (&htext[i],
(sparse_spectrum_file_length
!=
0) ?
sparse_spectrum_file_length :
OSBF_DEFAULT_SPARSE_SPECTRUM_FILE_LENGTH,
OSBF_VERSION, 0,
OSBF_CSS_SPECTRA_START) != EXIT_SUCCESS)
{
fprintf (stderr,
"\n Couldn't create file %s; errno=%d .\n",
&htext[i], errno);
exit (EXIT_FAILURE);
}
// and reset the statbuf to be correct
k = stat (&htext[i], &statbuf);
};
//
// open the hash file into memory so we can bitwhack it
//
fname = strdup (&htext[i]);
header = crm_mmap_file (fname,
0, statbuf.st_size,
PROT_READ | PROT_WRITE, MAP_SHARED, NULL);
if (header == MAP_FAILED)
{
fev =
fatalerror ("Couldn't memory-map the .cfc file named: ", &htext[i]);
return (fev);
};
//
if (user_trace)
fprintf (stderr,
"Sparse spectra file %s has length %ld bins\n",
&htext[i], header->buckets);
hashes = (OSBF_FEATUREBUCKET_STRUCT *) header + header->buckets_start;
// check the version of the file
//
if (*((unsigned long *) header->version) != OSBF_VERSION
|| header->flags != 0)
{
fprintf (stderr, "Version was: %ld, flags was %ld\n",
*((unsigned long *) header->version), header->flags);
fev =
fatalerror
("The .cfc file is the wrong type! We're expecting "
"a OSBF_Bayes-spectrum file. The filename is: ", &htext[i]);
return (fev);
};
//
//
spectra_start = header->buckets_start;
// compile the word regex
//
if (internal_trace)
fprintf (stderr, "\nWordmatch pattern is %s", ptext);
// compile regex if not empty - empty regex means "plain regex"
if (ptext[0] != '\0')
{
i = crm_regcomp (®cb, ptext, plen, cflags);
if (i > 0)
{
crm_regerror (i, ®cb, tempbuf, data_window_size);
nonfatalerror ("Regular Expression Compilation Problem:", tempbuf);
goto regcomp_failed;
};
}
// Start by priming the pipe... we will shift to the left next.
// sliding, hashing, xoring, moduloing, and incrmenting the
// hashes till there are no more.
k = 0;
j = 0;
i = 0;
textoffset = txtstart;
textmaxoffset = txtstart + txtlen;
// init the hashpipe with 0xDEADBEEF
for (h = 0; h < OSB_BAYES_WINDOW_LEN; h++)
{
hashpipe[h] = 0xDEADBEEF;
};
// and the big loop...
i = 0;
// initialize the token search structure
ts.ptok = (unsigned char *) &(txtptr[textoffset]);
ts.max_ptok = (unsigned char *) &(txtptr[textmaxoffset]);
ts.toklen = 0;
ts.pattern = ptext;
ts.regcb = ®cb;
ts.max_long_tokens = OSBF_MAX_LONG_TOKENS;
while (get_next_hash (&ts) == 0)
{
if (internal_trace)
{
memmove (tempbuf, ts.ptok, ts.toklen);
tempbuf[ts.toklen] = '\000';
fprintf (stderr,
" Learn #%ld t.o. %ld strt %ld end %ld len %lu is -%s-\n",
i,
textoffset,
ts.ptok - (unsigned char *) &(txtptr[textoffset]),
(ts.ptok + ts.toklen) -
(unsigned char *) &(txtptr[textoffset]),
ts.toklen, tempbuf);
};
// Shift the hash pipe down one
for (h = OSB_BAYES_WINDOW_LEN - 1; h > 0; h--)
{
hashpipe[h] = hashpipe[h - 1];
};
// and put new hash into pipeline
hashpipe[0] = ts.hash;
if (internal_trace)
{
fprintf (stderr, " Hashpipe contents: ");
for (h = 0; h < OSB_BAYES_WINDOW_LEN; h++)
fprintf (stderr, " %u", hashpipe[h]);
fprintf (stderr, "\n");
};
/* prepare for next token */
ts.ptok += ts.toklen;
textoffset += ts.ptok - (unsigned char *) &(txtptr[textoffset]);
i++;
{
unsigned long hindex, bindex;
unsigned long h1, h2;
long th = 0; // a counter used for TSS tokenizing
long j;
//
// old Hash polynomial: h0 + 3h1 + 5h2 +11h3 +23h4
// (coefficients chosen by requiring superincreasing,
// as well as prime)
//
th = 0;
//
for (j = 1; j < OSB_BAYES_WINDOW_LEN; j++)
{
h1 = hashpipe[0] * hctable[0] + hashpipe[j] * hctable[j << 1];
h2 =
hashpipe[0] * hctable[1] + hashpipe[j] * hctable[(j << 1) - 1];
hindex = h1 % header->buckets;
if (internal_trace)
fprintf (stderr,
"Polynomial %ld has h1:%ld h2: %ld\n", j, h1, h2);
//
// we now look at both the primary (h1) and
// crosscut (h2) indexes to see if we've got
// the right bucket or if we need to look further
//
bindex = crm_osbf_find_bucket (header, h1, h2);
if (VALID_BUCKET (header, bindex))
{
if (!EMPTY_BUCKET (hashes[bindex]))
{
if (!BUCKET_IS_LOCKED (hashes[bindex]))
{
crm_osbf_update_bucket (header, bindex, sense);
if (internal_trace)
fprintf (stderr, "Updated feature at %ld\n",
hindex);
}
}
else if (sense > 0)
{
crm_osbf_insert_bucket (header, bindex, h1, h2, sense);
if (internal_trace)
fprintf (stderr, "New feature at %ld\n", hindex);
}
}
else
{
nonfatalerror
("Your program is stuffing too many "
"features into this size .cfc file. "
"Adding any more features is "
"impossible in this file.",
"You are advised to build a larger "
".cfc file and merge your data into " "it.");
goto learn_end_regex_loop;
}
}
}
} // end the while k==0
learn_end_regex_loop:
// unlock features locked during learning
for (i = 0; i < header->buckets; i++)
UNLOCK_BUCKET (hashes[i]);
// update the number of learnings
if (sense > 0)
{
header->learnings += sense;
if (header->learnings >= (OSBF_FEATUREBUCKET_VALUE_MAX - 1))
{
header->learnings >>= 1;
for (i = 0; i < header->buckets; i++)
BUCKET_RAW_VALUE (hashes[i]) = BUCKET_RAW_VALUE (hashes[i]) >> 1;
nonfatalerror
("You have managed to LEARN so many documents that"
" you have forced rescaling of the entire database.",
" If you are the first person to do this, Fidelis "
" owes you a bottle of good singlemalt scotch");
}
}
else if (header->learnings >= (unsigned long) (-sense))
{
header->learnings += sense;
}
regcomp_failed:
// and remember to let go of the mmaps and the pattern bufffer
// (because we may have written it, force a cache flush)
// crm_munmap_all ();
crm_munmap_file ((void *) header);
#ifndef CRM_WINDOWS
// Because mmap/munmap doesn't set atime, nor set the "modified"
// flag, some network filesystems will fail to mark the file as
// modified and so their cacheing will make a mistake.
//
// The fix is to do a trivial read/write on the .cfc ile, to force
// the filesystem to repropagate it's caches.
//
{
int hfd; // hashfile fd
OSBF_FEATURE_HEADER_STRUCT foo;
hfd = open (fname, O_RDWR);
dontcare = read (hfd, &foo, sizeof (foo));
lseek (hfd, 0, SEEK_SET);
dontcare = write (hfd, &foo, sizeof (foo));
close (hfd);
}
#endif // !CRM_WINDOWS
if (ptext[0] != '\0')
crm_regfree (®cb);
return (0);
}
// How to do a Osb_Bayes CLASSIFY some text.
//
int
crm_expr_osbf_bayes_classify (CSL_CELL * csl, ARGPARSE_BLOCK * apb,
char *txtptr, long txtstart, long txtlen)
{
// classify the sparse spectrum of this input window
// as belonging to a particular type.
//
// This code should look very familiar- it's cribbed from
// the code for LEARN
//
long i, j, k;
long h; // we use h for our hashpipe counter, as needed.
char ptext[MAX_PATTERN]; // the regex pattern
long plen;
char ostext[MAX_PATTERN]; // optional pR offset
long oslen;
double pR_offset;
// the hash file names
char htext[MAX_PATTERN + MAX_CLASSIFIERS * MAX_FILE_NAME_LEN];
long htext_maxlen = MAX_PATTERN + MAX_CLASSIFIERS * MAX_FILE_NAME_LEN;
long hlen;
// the match statistics variable
char stext[MAX_PATTERN + MAX_CLASSIFIERS * (MAX_FILE_NAME_LEN + 100)];
long stext_maxlen =
MAX_PATTERN + MAX_CLASSIFIERS * (MAX_FILE_NAME_LEN + 100);
long slen;
char svrbl[MAX_PATTERN]; // the match statistics text buffer
long svlen;
long fnameoffset;
char fname[MAX_FILE_NAME_LEN];
long eflags;
long cflags;
// long vhtindex;
long not_microgroom = 1;
struct stat statbuf; // for statting the hash file
unsigned int hashpipe[OSB_BAYES_WINDOW_LEN + 1];
regex_t regcb;
double hits[MAX_CLASSIFIERS]; // actual hits per feature per classifier
unsigned long totalhits[MAX_CLASSIFIERS]; // actual total hits per classifier
unsigned long learnings[MAX_CLASSIFIERS]; // total learnings per classifier
unsigned long total_learnings = 0;
unsigned long totalfeatures; // total features
unsigned long uniquefeatures[MAX_CLASSIFIERS]; // found features per class
unsigned long missedfeatures[MAX_CLASSIFIERS]; // missed features per class
double htf; // hits this feature got.
double tprob; // total probability in the "success" domain.
double min_success = 0.5; // minimum probability to be considered success
// double textlen; // text length - rougly corresponds to
// information content of the text to classify
double ptc[MAX_CLASSIFIERS]; // current running probability of this class
double renorm = 0.0;
OSBF_FEATURE_HEADER_STRUCT *header[MAX_CLASSIFIERS];
OSBF_FEATUREBUCKET_STRUCT *hashes[MAX_CLASSIFIERS];
char *seen_features[MAX_CLASSIFIERS];
long hashlens[MAX_CLASSIFIERS];
char *hashname[MAX_CLASSIFIERS];
long succhash;
long vbar_seen; // did we see '|' in classify's args?
long maxhash;
long fnstart, fnlen;
long fn_start_here;
long textoffset;
long textmaxoffset;
long bestseen;
long thistotal;
struct token_search ts;
// cubic weights seem to work well with this new code... - Fidelis
//float feature_weight[] = { 0, 125, 64, 27, 8, 1, 0 }; // cubic
// these empirical weights give better accuracy with
// the CF * unique/totalfeatures used in this code - Fidelis
float feature_weight[] = { 0, 3125, 256, 27, 4, 1 };
float confidence_factor;
int asymmetric = 0; /* for testings */
int voodoo = 1; /* default */
//double top10scores[10];
//long top10polys[10];
//char top10texts[10][MAX_PATTERN];
/* fprintf(stderr, "Starting classification...\n"); */
if (user_trace)
fprintf (stderr, "OSBF classify\n");
if (internal_trace)
fprintf (stderr, "executing a CLASSIFY\n");
// extract the hash file names
crm_get_pgm_arg (htext, htext_maxlen, apb->p1start, apb->p1len);
hlen = apb->p1len;
hlen = crm_nexpandvar (htext, hlen, htext_maxlen);
// extract the "this is a word" regex
//
ptext[0] = '\0'; // assume empty regex
crm_get_pgm_arg (ptext, MAX_PATTERN, apb->s1start, apb->s1len);
plen = apb->s1len;
plen = crm_nexpandvar (ptext, plen, MAX_PATTERN);
// extract the optional pR offset value
//
crm_get_pgm_arg (ostext, MAX_PATTERN, apb->s2start, apb->s2len);
oslen = apb->s2len;
pR_offset = 0;
min_success = 0.5;
if (oslen > 0)
{
oslen = crm_nexpandvar (ostext, oslen, MAX_PATTERN);
pR_offset = strtod (ostext, NULL);
min_success = 1.0 - 1.0 / (1 + pow (10, pR_offset));
}
// extract the optional "match statistics" variable
//
crm_get_pgm_arg (svrbl, MAX_PATTERN, apb->p2start, apb->p2len);
svlen = apb->p2len;
svlen = crm_nexpandvar (svrbl, svlen, MAX_PATTERN);
{
long vstart, vlen;
crm_nextword (svrbl, svlen, 0, &vstart, &vlen);
memmove (svrbl, &svrbl[vstart], vlen);
svlen = vlen;
svrbl[vlen] = '\000';
};
// status variable's text (used for output stats)
//
stext[0] = '\000';
slen = 0;
// set our flags, if needed. The defaults are
// "case"
cflags = REG_EXTENDED;
eflags = 0;
if (apb->sflags & CRM_NOCASE)
{
cflags += REG_ICASE;
eflags = 1;
};
not_microgroom = 1;
if (apb->sflags & CRM_MICROGROOM)
{
not_microgroom = 0;
if (user_trace)
fprintf (stderr, " disabling fast-skip optimization.\n");
};
// compile the word regex if not empty
if (ptext[0] != '\0')
{
if (internal_trace)
fprintf (stderr, "\nWordmatch pattern is |%s|", ptext);
i = crm_regcomp (®cb, ptext, plen, cflags);
if (i > 0)
{
crm_regerror (i, ®cb, tempbuf, data_window_size);
nonfatalerror ("Regular Expression Compilation Problem:", tempbuf);
goto regcomp_failed;
};
}
// Now, the loop to open the files.
bestseen = 0;
thistotal = 0;
//for (i = 0; i < 10; i++)
// {
// top10scores[i] = 0;
// top10polys[i] = 0;
// strcpy (top10texts[i], "");
// };
// -- probabilistic evaluator ---
// S = success; A = a testable attribute of success
// ns = not success, na = not attribute
// the chain rule we use is:
//
// P(A|S) P(S)
// P (S|A) = -------------------------
// P(A|S) P(S) + P(A|NS) P(NS)
//
// and we apply it repeatedly to evaluate the final prob. For
// the initial a-priori probability, we use 0.5. The output
// value (here, P(S|A) ) becomes the new a-priori for the next
// iteration.
//
// Extension - we generalize the above to I classes as and feature
// F as follows:
//
// P(F|Ci) P(Ci)
// P(Ci|F) = ----------------------------------------
// Sum over all classes Ci of P(F|Ci) P(Ci)
//
// We also correct for the unequal corpus sizes by multiplying
// the probabilities by a renormalization factor. if Tg is the
// total number of good features, and Te is the total number of
// evil features, and Rg and Re are the raw relative scores,
// then the corrected relative scores Cg aqnd Ce are
//
// Cg = (Rg / Tg)
// Ce = (Re / Te)
//
// or Ci = (Ri / Ti)
//
// Cg and Ce can now be used as "corrected" relative counts
// to calculate the naive Bayesian probabilities.
//
// Lastly, the issue of "over-certainty" rears it's ugly head.
// This is what happens when there's a zero raw count of either
// good or evil features at a particular place in the file; the
// strict but naive mathematical interpretation of this is that
// "feature A never/always occurs when in good/evil, hence this
// is conclusive evidence of good/evil and the probabilities go
// to 1.0 or 0.0, and are stuck there forevermore. We use the
// somewhat ad-hoc interpretation that it is unreasonable to
// assume that any finite number of samples can appropriately
// represent an infinite continuum of spewage, so we can bound
// the certainty of any meausre to be in the range:
//
// limit: [ 1/featurecount+2 , 1 - 1/featurecount+2].
//
// The prior bound is strictly made-up-on-the-spot and has NO
// strong theoretical basis. It does have the nice behavior
// that for feature counts of 0 the probability is clipped to
// [0.5, 0.5], for feature counts of 1 to [0.333, 0.666]
// for feature counts of 2 to [0.25, 0.75], for 3 to
// [0.2, 0.8], for 4 to [0.166, 0.833] and so on.
//
vbar_seen = 0;
maxhash = 0;
succhash = 0;
fnameoffset = 0;
// now, get the file names and mmap each file
// get the file name (grody and non-8-bit-safe, but doesn't matter
// because the result is used for open() and nothing else.
// GROT GROT GROT this isn't NULL-clean on filenames. But then
// again, stdio.h itself isn't NULL-clean on filenames.
if (user_trace)
fprintf (stderr, "Classify list: -%s- \n", htext);
fn_start_here = 0;
fnlen = 1;
while (fnlen > 0 && ((maxhash < MAX_CLASSIFIERS - 1)))
{
crm_nextword (htext, hlen, fn_start_here, &fnstart, &fnlen);
if (fnlen > 0)
{
strncpy (fname, &htext[fnstart], fnlen);
fn_start_here = fnstart + fnlen + 1;
fname[fnlen] = '\000';
if (user_trace)
fprintf (stderr, "Classifying with file -%s- "
"succhash=%ld, maxhash=%ld\n", fname, succhash, maxhash);
if (fname[0] == '|' && fname[1] == '\000')
{
if (vbar_seen)
{
nonfatalerror
("Only one ' | ' allowed in a CLASSIFY. \n",
"We'll ignore it for now.");
}
else
{
succhash = maxhash;
};
vbar_seen++;
}
else
{
// be sure the file exists
// stat the file to get it's length
k = stat (fname, &statbuf);
// quick check- does the file even exist?
if (k != 0)
{
nonfatalerror ("Nonexistent Classify table named: ", fname);
}
else
{
// file exists - do the open/process/close
//
hashlens[maxhash] = statbuf.st_size;
// mmap the hash file into memory so we can bitwhack it
header[maxhash] = (OSBF_FEATURE_HEADER_STRUCT *)
crm_mmap_file ( fname,
0, hashlens[maxhash],
PROT_READ | PROT_WRITE,
MAP_SHARED,
NULL);
if (header[maxhash] == MAP_FAILED)
{
nonfatalerror
("Couldn't memory-map the table file", fname);
}
else
{
//
// Check to see if this file is the right version
//
long fev;
if (*
((unsigned long *)
header[maxhash]->version) !=
OSBF_VERSION || header[maxhash]->flags != 0)
{
fev =
fatalerror
("The .cfc file is the wrong version! Filename is: ",
fname);
return (fev);
};
// grab the start of the actual spectrum data.
//
hashes[maxhash] =
(OSBF_FEATUREBUCKET_STRUCT *)
header[maxhash] + header[maxhash]->buckets_start;
spectra_start = header[maxhash]->buckets_start;
learnings[maxhash] = header[maxhash]->learnings;
//
// increment learnings to avoid division by 0
if (learnings[maxhash] == 0)
learnings[maxhash]++;
// update total learnings
total_learnings += learnings[maxhash];
// set this hashlens to the length in features instead
// of the length in bytes.
hashlens[maxhash] = header[maxhash]->buckets;
hashname[maxhash] = (char *) malloc (fnlen + 10);
if (!hashname[maxhash])
untrappableerror
("Couldn't malloc hashname[maxhash]\n",
"We need that part later, so we're stuck. Sorry.");
strncpy (hashname[maxhash], fname, fnlen);
hashname[maxhash][fnlen] = '\000';
maxhash++;
};
};
};
if (maxhash > MAX_CLASSIFIERS - 1)
nonfatalerror ("Too many classifier files.",
"Some may have been disregarded");
};
};
for (i = 0; i < maxhash; i++)
{
seen_features[i] = malloc (header[i]->buckets);
if (!seen_features[i])
untrappableerror
("Couldn't malloc seen features array\n",
"We need that part later, so we're stuck. Sorry.");
memset (seen_features[i], 0, header[i]->buckets);
// initialize our arrays for N .cfc files
hits[i] = 0.0; // absolute hit counts
totalhits[i] = 0; // absolute hit counts
uniquefeatures[i] = 0; // features counted per class
missedfeatures[i] = 0; // missed features per class
// a priori probability
ptc[i] = (double) learnings[i] / total_learnings;
// ptc[i] = 0.5;
}
//
// If there is no '|', then all files are "success" files.
if (succhash == 0)
succhash = maxhash;
// a CLASSIFY with no arguments is always a "success".
if (maxhash == 0)
return (0);
if (user_trace)
fprintf (stderr,
"Running with %ld files for success out of %ld files\n",
succhash, maxhash);
// sanity checks... Uncomment for super-strict CLASSIFY.
//
// do we have at least 1 valid .cfc files?
if (maxhash == 0)
{
fatalerror ("Couldn't open at least 2 .cfc files for classify().", "");
};
// do we have at least 1 valid .cfc file at both sides of '|'?
//if (!vbar_seen || succhash < 0 || (maxhash < succhash + 2))
// {
// nonfatalerror (
// "Couldn't open at least 1 .cfc file per SUCC | FAIL classes "
// " for classify().\n","Hope you know what are you doing.");
// };
//
// now all of the files are mmapped into memory,
// and we can do the polynomials and add up points.
i = 0;
j = 0;
k = 0;
thistotal = 0;
textoffset = txtstart;
textmaxoffset = txtstart + txtlen;
// init the hashpipe with 0xDEADBEEF
for (h = 0; h < OSB_BAYES_WINDOW_LEN; h++)
{
hashpipe[h] = 0xDEADBEEF;
};
totalfeatures = 0;
// stop when we no longer get any regex matches
// possible edge effect here- last character must be matchable, yet
// it's also the "end of buffer".
// initialize the token search structure
ts.ptok = (unsigned char *) &(txtptr[textoffset]);
ts.max_ptok = (unsigned char *) &(txtptr[textmaxoffset]);
ts.toklen = 0;
ts.pattern = ptext;
ts.regcb = ®cb;
ts.max_long_tokens = OSBF_MAX_LONG_TOKENS;
while (get_next_hash (&ts) == 0)
{
if (internal_trace)
{
memmove (tempbuf, ts.ptok, ts.toklen);
tempbuf[ts.toklen] = '\000';
fprintf (stderr,
" Classify #%ld t.o. %ld strt %ld end %ld len %lu is -%s-\n",
i,
textoffset,
ts.ptok -
(unsigned char *) &(txtptr[textoffset]),
(ts.ptok + ts.toklen) -
(unsigned char *) &(txtptr[textoffset]),
ts.toklen, tempbuf);
};
// slide previous hashes up 1
for (h = OSB_BAYES_WINDOW_LEN - 1; h > 0; h--)
{
hashpipe[h] = hashpipe[h - 1];
};
// and put new hash into pipeline
hashpipe[0] = ts.hash;
if (0)
{
fprintf (stderr, " Hashpipe contents: ");
for (h = 0; h < OSB_BAYES_WINDOW_LEN; h++)
fprintf (stderr, " %u", hashpipe[h]);
fprintf (stderr, "\n");
};
/* prepare for next token */
ts.ptok += ts.toklen;
textoffset += ts.ptok - (unsigned char *) &(txtptr[textoffset]);
i++;
{
int j, k;
unsigned th = 0; // a counter used only in TSS hashing
unsigned long hindex;
unsigned long h1, h2;
// remember indexes of classes with min and max local probabilities
int i_min_p, i_max_p;
// remember min and max local probabilities of a feature
double min_local_p, max_local_p;
int already_seen;
//
th = 0;
//
for (j = 1; j < OSB_BAYES_WINDOW_LEN; j++)
{
h1 = hashpipe[0] * hctable[0] + hashpipe[j] * hctable[j << 1];
h2 =
hashpipe[0] * hctable[1] + hashpipe[j] * hctable[(j << 1) - 1];
hindex = h1;
if (internal_trace)
fprintf (stderr,
"Polynomial %d has h1:%ld h2: %ld\n", j, h1, h2);
//
// Note - a strict interpretation of Bayesian
// chain probabilities should use 0 as the initial
// state. However, because we rapidly run out of
// significant digits, we use a much less strong
// initial state. Note also that any nonzero
// positive value prevents divide-by-zero
//
// Zero out "Hits This Feature"
htf = 0;
totalfeatures++;
//
// calculate the precursors to the local probabilities;
// these are the hits[k] array, and the htf total.
//
min_local_p = 1.0;
max_local_p = 0;
i_min_p = i_max_p = 0;
already_seen = 0;
for (k = 0; k < maxhash; k++)
{
long lh, lh0;
float p_feat = 0;
lh = hindex % (hashlens[k]);
lh0 = lh;
hits[k] = 0;
lh = crm_osbf_find_bucket (header[k], h1, h2);
// if the feature isn't found in the class, the index lh
// will point to the first empty bucket after the chain
// and its value will be 0.
//
// the bucket is valid if its index is valid. if the
// index "lh" is >= the number of buckets, it means that
// the .cfc file is full and the bucket wasn't found
if (VALID_BUCKET (header[k], lh) && seen_features[k][lh] == 0)
{
// only not previously seen features are considered
if (GET_BUCKET_VALUE (hashes[k][lh]) != 0)
{
uniquefeatures[k] += 1; // count unique features used
hits[k] = GET_BUCKET_VALUE (hashes[k][lh]);
totalhits[k] += hits[k]; // remember totalhits
htf += hits[k]; // and hits-this-feature
p_feat = hits[k] / learnings[k];
// find class with minimum P(F)
if (p_feat <= min_local_p)
{
i_min_p = k;
min_local_p = p_feat;
}
// find class with maximum P(F)
if (p_feat >= max_local_p)
{
i_max_p = k;
max_local_p = p_feat;
}
// mark the feature as seen
seen_features[k][lh] = 1;
}
else
{
// a feature that wasn't found can't be marked as
// already seen in the doc because the index lh
// doesn't refer to it, but to the first empty bucket
// after the chain, which is common to all not-found
// features in the same chain. This is not a problem
// though, because if the feature is found in another
// class, it'll be marked as seen on that class,
// which is enough to mark it as seen. If it's not
// found in any class, it will have zero count on all
// classes and will be ignored as well. So, only
// found features are marked as seen.
i_min_p = k;
min_local_p = p_feat = 0;
// for statistics only (for now...)
missedfeatures[k] += 1;
}
}
else
{
// ignore already seen features
if (VALID_BUCKET (header[k], lh))
{
min_local_p = max_local_p = 0;
already_seen = 1;
if (asymmetric != 0)
break;
}
else
{
/* bucket not valid. treat like feature not found */
i_min_p = k;
min_local_p = p_feat = 0;
// for statistics only (for now...)
missedfeatures[k] += 1;
}
}
}
//=======================================================
// Update the probabilities using Bayes:
//
// P(F|S) P(S)
// P(S|F) = -------------------------------
// P(F|S) P(S) + P(F|NS) P(NS)
//
// S = class spam; NS = class nonspam; F = feature
//
// Here we adopt a different method for estimating
// P(F|S). Instead of estimating P(F|S) as (hits[S][F] /
// (hits[S][F] + hits[NS][F])), like in the original
// code, we use (hits[S][F] / learnings[S]) which is the
// ratio between the number of messages of the class S
// where the feature F was observed during learnings and
// the total number of learnings of that class. Both
// values are kept in the respective .cfc file, the
// number of learnings in the header and the number of
// occurrences of the feature F as the value of its
// feature bucket.
//
// It's worth noting another important difference here:
// as we want to estimate the *number of messages* of a
// given class where a certain feature F occurs, we
// count only the first ocurrence of each feature in a
// message (repetitions are ignored), both when learning
// and when classifying.
//
// Advantages of this method, compared to the original:
//
// - First of all, and the most important: accuracy is
// really much better, at about the same speed! With
// this higher accuracy, it's also possible to increase
// the speed, at the cost of a low decrease in accuracy,
// using smaller .cfc files;
//
// - It is not affected by different sized classes
// because the numerator and the denominator belong to
// the same class;
//
// - It allows a simple and fast pruning method that
// seems to introduce little noise: just zero features
// with lower count in a overflowed chain, zeroing first
// those in their right places, to increase the chances
// of deleting older ones.
//
// Disadvantages:
//
// - It breaks compatibility with previous css file
// format because of different header structure and
// meaning of the counts.
//
// Confidence factors
//
// The motivation for confidence factors is to reduce
// the noise introduced by features with small counts
// and/or low significance. This is an attempt to mimic
// what we do when inspecting a message to tell if it is
// spam or not. We intuitively consider only a few
// tokens, those which carry strong indications,
// according to what we've learned and remember, and
// discard the ones that may occur (approximately)
// equally in both classes.
//
// Once P(Feature|Class) is estimated as above, the
// calculated value is adjusted using the following
// formula:
//
// CP(Feature|Class) = 0.5 +
// CF(Feature) * (P(Feature|Class) - 0.5)
//
// Where CF(Feature) is the confidence factor and
// CP(Feature|Class) is the adjusted estimate for the
// probability.
//
// CF(Feature) is calculated taking into account the
// weight, the max and the min frequency of the feature
// over the classes, using the empirical formula:
//
// (((Hmax - Hmin)^2 + Hmax*Hmin - K1/SH) / SH^2) ^ K2
// CF(Feature) = ------------------------------------------
// 1 + K3 / (SH * Weight)
//
// Hmax - Number of documents with the feature "F" on
// the class with max local probability;
// Hmin - Number of documents with the feature "F" on
// the class with min local probability;
// SH - Sum of Hmax and Hmin
// K1, K2, K3 - Empirical constants
//
// OBS: - Hmax and Hmin are normalized to the max number
// of learnings of the 2 classes involved.
// - Besides modulating the estimated P(Feature|Class),
// reducing the noise, 0 <= CF < 1 is also used to
// restrict the probability range, avoiding the
// certainty falsely implied by a 0 count for a given
// class.
//
// -- Fidelis Assis
//=========================================================
// ignore less significant features (confidence factor = 0)
if (already_seen != 0 || (max_local_p - min_local_p) < 1.0E-6)
continue;
// testing speed-up...
if (min_local_p > 0
&& (max_local_p / min_local_p) < min_pmax_pmin_ratio)
continue;
// code under testing....
// calculate confidence_factor
{
// hmmm, unsigned long gives better precision than float...
//float hits_max_p, hits_min_p, sum_hits, diff_hits;
//unsigned long hits_max_p, hits_min_p, sum_hits, diff_hits;
unsigned long hits_max_p, hits_min_p, sum_hits;
long diff_hits;
float K1, K2, K3;
hits_min_p = hits[i_min_p];
hits_max_p = hits[i_max_p];
// normalize hits to max learnings
if (learnings[i_min_p] < learnings[i_max_p])
hits_min_p *=
(float) learnings[i_max_p] / (float) learnings[i_min_p];
else
hits_max_p *=
(float) learnings[i_min_p] / (float) learnings[i_max_p];
sum_hits = hits_max_p + hits_min_p;
diff_hits = hits_max_p - hits_min_p;
if (diff_hits < 0)
diff_hits = -diff_hits;
// constants used in the CF formula above
// K1 = 0.25; K2 = 10; K3 = 8;
K1 = 0.25;
K2 = 10;
K3 = 8;
// calculate confidence factor (CF)
if (voodoo == 0) /* || min_local_p > 0) */
confidence_factor = 1 - DBL_MIN;
else
confidence_factor =
pow ((diff_hits * diff_hits +
hits_max_p * hits_min_p -
K1 / sum_hits) / (sum_hits * sum_hits),
K2) / (1.0 + K3 / (sum_hits * feature_weight[j]));
if (internal_trace)
printf ("CF: %.4f, max_hits = %3ld, min_hits = %3ld, "
"weight: %5.1f\n", confidence_factor,
hits_max_p, hits_min_p, feature_weight[j]);
}
// calculate the numerators P(F|C) * P(C)
renorm = 0.0;
for (k = 0; k < maxhash; k++)
{
// P(F|C) = hits[k]/learnings[k], adjusted with a
// confidence factor, to reduce the influence
// of features common to all classes
ptc[k] = ptc[k] * (0.5 + confidence_factor *
(hits[k] / learnings[k] - 0.5));
// if we have underflow (any probability == 0.0 ) then
// bump the probability back up to 10^-308, or
// whatever a small multiple of the minimum double
// precision value is on the current platform.
if (ptc[k] < 10 * DBL_MIN)
ptc[k] = 10 * DBL_MIN;
renorm += ptc[k];
if (internal_trace)
printf
("CF: %.4f, totalhits[k]: %lu, missedfeatures[k]: %lu, "
"uniquefeatures[k]: %lu, totalfeatures: %lu, "
"weight: %5.1f\n", confidence_factor,
totalhits[k], missedfeatures[k],
uniquefeatures[k], totalfeatures, feature_weight[j]);
}
// renormalize probabilities
for (k = 0; k < maxhash; k++)
ptc[k] = ptc[k] / renorm;
if (internal_trace)
{
for (k = 0; k < maxhash; k++)
{
fprintf (stderr,
" poly: %d filenum: %d, HTF: %7.0f, "
"learnings: %7lu, hits: %7.0f, "
"Pc: %6.4e\n", j, k, htf,
header[k]->learnings, hits[k], ptc[k]);
};
};
//
// avoid the fencepost error for window=1
if (OSB_BAYES_WINDOW_LEN == 1)
{
j = 99999;
};
};
};
}; // end of repeat-the-regex loop
// cleanup time!
// remember to let go of the fd's and mmaps
for (k = 0; k < maxhash; k++)
{
// let go of the file, but allow caches to be retained
if (header[k]) crm_munmap_file ((void *) header[k]);
free (seen_features[k]);
};
// and let go of the regex buffery
if (ptext[0] != '\0')
crm_regfree (®cb);
// and one last chance to force probabilities into the non-stuck zone
//
// if (pic == 0.0 ) pic = DBL_MIN;
//if (pnic == 0.0 ) pnic = DBL_MIN;
/*
for (k = 0; k < maxhash; k++)
if (ptc[k] < 10 * DBL_MIN)
ptc[k] = 10 * DBL_MIN;
*/
if (user_trace)
{
for (k = 0; k < maxhash; k++)
fprintf (stderr,
"Probability of match for file %ld: %f\n", k, ptc[k]);
};
//
tprob = 0.0;
for (k = 0; k < succhash; k++)
tprob = tprob + ptc[k];
if (svlen > 0)
{
char buf[1024];
double accumulator;
double remainder;
double overall_pR;
long m;
buf[0] = '\000';
accumulator = 10 * DBL_MIN;
for (m = 0; m < succhash; m++)
{
accumulator = accumulator + ptc[m];
};
remainder = 10 * DBL_MIN;
for (m = succhash; m < maxhash; m++)
{
remainder = remainder + ptc[m];
};
overall_pR = log10 (accumulator) - log10 (remainder);
// note also that strcat _accumulates_ in stext.
// There would be a possible buffer overflow except that _we_ control
// what gets written here. So it's no biggie.
if (tprob > min_success)
{
// if a pR offset was given, print it together with the real pR
if (oslen > 0)
{
sprintf (buf,
"CLASSIFY succeeds; success probability: "
"%6.4f pR: %6.4f/%6.4f\n",
tprob, overall_pR, pR_offset);
}
else
{
sprintf (buf,
"CLASSIFY succeeds; success probability: "
"%6.4f pR: %6.4f\n", tprob, overall_pR);
}
}
else
{
// if a pR offset was given, print it together with the real pR
if (oslen > 0)
{
sprintf (buf,
"CLASSIFY fails; success probability: "
"%6.4f pR: %6.4f/%6.4f\n",
tprob, overall_pR, pR_offset);
}
else
{
sprintf (buf,
"CLASSIFY fails; success probability: "
"%6.4f pR: %6.4f\n", tprob, overall_pR);
}
};
if (strlen (stext) + strlen (buf) <= stext_maxlen)
strcat (stext, buf);
bestseen = 0;
for (k = 0; k < maxhash; k++)
if (ptc[k] > ptc[bestseen])
bestseen = k;
remainder = 10 * DBL_MIN;
for (m = 0; m < maxhash; m++)
if (bestseen != m)
{
remainder = remainder + ptc[m];
};
sprintf (buf, "Best match to file #%ld (%s) "
"prob: %6.4f pR: %6.4f \n",
bestseen,
hashname[bestseen],
ptc[bestseen], (log10 (ptc[bestseen]) - log10 (remainder)));
if (strlen (stext) + strlen (buf) <= stext_maxlen)
strcat (stext, buf);
sprintf (buf, "Total features in input file: %ld\n", totalfeatures);
if (strlen (stext) + strlen (buf) <= stext_maxlen)
strcat (stext, buf);
for (k = 0; k < maxhash; k++)
{
long m;
remainder = 10 * DBL_MIN;
for (m = 0; m < maxhash; m++)
if (k != m)
{
remainder = remainder + ptc[m];
};
sprintf (buf,
"#%ld (%s):"
" hits: %ld, ufeats: %ld, prob: %3.2e, pR: %6.2f \n",
k,
hashname[k],
totalhits[k],
uniquefeatures[k],
ptc[k], (log10 (ptc[k]) - log10 (remainder)));
// strcat (stext, buf);
if (strlen (stext) + strlen (buf) <= stext_maxlen)
strcat (stext, buf);
}
// check here if we got enough room in stext to stuff everything
// perhaps we'd better rise a nonfatalerror, instead of just
// whining on stderr
if (strcmp (&(stext[strlen (stext) - strlen (buf)]), buf) != 0)
{
nonfatalerror
("WARNING: not enough room in the buffer to create "
"the statistics text. Perhaps you could try bigger "
"values for MAX_CLASSIFIERS or MAX_FILE_NAME_LEN?", " ");
}
crm_destructive_alter_nvariable (svrbl, svlen, stext, strlen (stext));
}
//
// Free the hashnames, to avoid a memory leak.
//
for (i = 0; i < maxhash; i++)
free (hashname[i]);
if (tprob <= min_success)
{
if (user_trace)
fprintf (stderr, "CLASSIFY was a FAIL, skipping forward.\n");
// and do what we do for a FAIL here
csl->cstmt = csl->mct[csl->cstmt]->fail_index - 1;
csl->aliusstk[csl->mct[csl->cstmt]->nest_level] = -1;
return (0);
}
//
// all done... if we got here, we should just continue execution
if (user_trace)
fprintf (stderr, "CLASSIFY was a SUCCESS, continuing execution.\n");
regcomp_failed:
return (0);
}
|