1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
/*
A C++ header for 64-bit Roaring Bitmaps, implemented by way of a map of many
32-bit Roaring Bitmaps.
*/
#ifndef INCLUDE_ROARING_64_MAP_HH_
#define INCLUDE_ROARING_64_MAP_HH_
#include <algorithm>
#include <cstdarg>
#include <cstdio>
#include <limits>
#include <map>
#include <new>
#include <numeric>
#include <stdexcept>
#include <string>
#include <utility>
#include "roaring.hh"
class Roaring64MapSetBitForwardIterator;
class Roaring64MapSetBitBiDirectionalIterator;
class Roaring64Map {
public:
/**
* Create an empty bitmap
*/
Roaring64Map() = default;
/**
* Construct a bitmap from a list of 32-bit integer values.
*/
Roaring64Map(size_t n, const uint32_t *data) { addMany(n, data); }
/**
* Construct a bitmap from a list of 64-bit integer values.
*/
Roaring64Map(size_t n, const uint64_t *data) { addMany(n, data); }
/**
* Construct a 64-bit map from a 32-bit one
*/
Roaring64Map(const Roaring &r) { emplaceOrInsert(0, r); }
/**
* Construct a roaring object from the C struct.
*
* Passing a NULL point is unsafe.
*/
Roaring64Map(roaring_bitmap_t *s) { emplaceOrInsert(0, s); }
/**
* Assignment operator.
*/
Roaring64Map &operator=(const Roaring64Map &r) {
roarings = r.roarings;
return *this;
}
/**
* Construct a bitmap from a list of integer values.
*/
static Roaring64Map bitmapOf(size_t n...) {
Roaring64Map ans;
va_list vl;
va_start(vl, n);
for (size_t i = 0; i < n; i++) {
ans.add(va_arg(vl, uint64_t));
}
va_end(vl);
return ans;
}
/**
* Add value x
*
*/
void add(uint32_t x) {
roarings[0].add(x);
roarings[0].setCopyOnWrite(copyOnWrite);
}
void add(uint64_t x) {
roarings[highBytes(x)].add(lowBytes(x));
roarings[highBytes(x)].setCopyOnWrite(copyOnWrite);
}
/**
* Add value x
* Returns true if a new value was added, false if the value was already existing.
*/
bool addChecked(uint32_t x) {
bool result = roarings[0].addChecked(x);
roarings[0].setCopyOnWrite(copyOnWrite);
return result;
}
bool addChecked(uint64_t x) {
bool result = roarings[highBytes(x)].addChecked(lowBytes(x));
roarings[highBytes(x)].setCopyOnWrite(copyOnWrite);
return result;
}
/**
* Add value n_args from pointer vals
*
*/
void addMany(size_t n_args, const uint32_t *vals) {
for (size_t lcv = 0; lcv < n_args; lcv++) {
roarings[0].add(vals[lcv]);
roarings[0].setCopyOnWrite(copyOnWrite);
}
}
void addMany(size_t n_args, const uint64_t *vals) {
for (size_t lcv = 0; lcv < n_args; lcv++) {
roarings[highBytes(vals[lcv])].add(lowBytes(vals[lcv]));
roarings[highBytes(vals[lcv])].setCopyOnWrite(copyOnWrite);
}
}
/**
* Remove value x
*
*/
void remove(uint32_t x) { roarings[0].remove(x); }
void remove(uint64_t x) {
auto roaring_iter = roarings.find(highBytes(x));
if (roaring_iter != roarings.cend())
roaring_iter->second.remove(lowBytes(x));
}
/**
* Remove value x
* Returns true if a new value was removed, false if the value was not existing.
*/
bool removeChecked(uint32_t x) {
return roarings[0].removeChecked(x);
}
bool removeChecked(uint64_t x) {
auto roaring_iter = roarings.find(highBytes(x));
if (roaring_iter != roarings.cend())
return roaring_iter->second.removeChecked(lowBytes(x));
return false;
}
/**
* Clear the bitmap
*/
void clear() {
roarings.clear();
}
/**
* Return the largest value (if not empty)
*
*/
uint64_t maximum() const {
for (auto roaring_iter = roarings.crbegin();
roaring_iter != roarings.crend(); ++roaring_iter) {
if (!roaring_iter->second.isEmpty()) {
return uniteBytes(roaring_iter->first,
roaring_iter->second.maximum());
}
}
// we put std::numeric_limits<>::max/min in parenthesis
// to avoid a clash with the Windows.h header under Windows
return (std::numeric_limits<uint64_t>::min)();
}
/**
* Return the smallest value (if not empty)
*
*/
uint64_t minimum() const {
for (auto roaring_iter = roarings.cbegin();
roaring_iter != roarings.cend(); ++roaring_iter) {
if (!roaring_iter->second.isEmpty()) {
return uniteBytes(roaring_iter->first,
roaring_iter->second.minimum());
}
}
// we put std::numeric_limits<>::max/min in parenthesis
// to avoid a clash with the Windows.h header under Windows
return (std::numeric_limits<uint64_t>::max)();
}
/**
* Check if value x is present
*/
bool contains(uint32_t x) const {
return roarings.count(0) == 0 ? false : roarings.at(0).contains(x);
}
bool contains(uint64_t x) const {
return roarings.count(highBytes(x)) == 0
? false
: roarings.at(highBytes(x)).contains(lowBytes(x));
}
/**
* Compute the intersection between the current bitmap and the provided
* bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*/
Roaring64Map &operator&=(const Roaring64Map &r) {
for (auto &map_entry : roarings) {
if (r.roarings.count(map_entry.first) == 1)
map_entry.second &= r.roarings.at(map_entry.first);
else
map_entry.second = Roaring();
}
return *this;
}
/**
* Compute the difference between the current bitmap and the provided
* bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*/
Roaring64Map &operator-=(const Roaring64Map &r) {
for (auto &map_entry : roarings) {
if (r.roarings.count(map_entry.first) == 1)
map_entry.second -= r.roarings.at(map_entry.first);
}
return *this;
}
/**
* Compute the union between the current bitmap and the provided bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*
* See also the fastunion function to aggregate many bitmaps more quickly.
*/
Roaring64Map &operator|=(const Roaring64Map &r) {
for (const auto &map_entry : r.roarings) {
if (roarings.count(map_entry.first) == 0) {
roarings[map_entry.first] = map_entry.second;
roarings[map_entry.first].setCopyOnWrite(copyOnWrite);
} else
roarings[map_entry.first] |= map_entry.second;
}
return *this;
}
/**
* Compute the symmetric union between the current bitmap and the provided
* bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*/
Roaring64Map &operator^=(const Roaring64Map &r) {
for (const auto &map_entry : r.roarings) {
if (roarings.count(map_entry.first) == 0) {
roarings[map_entry.first] = map_entry.second;
roarings[map_entry.first].setCopyOnWrite(copyOnWrite);
} else
roarings[map_entry.first] ^= map_entry.second;
}
return *this;
}
/**
* Exchange the content of this bitmap with another.
*/
void swap(Roaring64Map &r) { roarings.swap(r.roarings); }
/**
* Get the cardinality of the bitmap (number of elements).
* Throws std::length_error in the special case where the bitmap is full
* (cardinality() == 2^64). Check isFull() before calling to avoid
* exception.
*/
uint64_t cardinality() const {
if (isFull()) {
throw std::length_error(
"bitmap is full, cardinality is 2^64, "
"unable to represent in a 64-bit integer");
}
return std::accumulate(
roarings.cbegin(), roarings.cend(), (uint64_t)0,
[](uint64_t previous,
const std::pair<uint32_t, Roaring> &map_entry) {
return previous + map_entry.second.cardinality();
});
}
/**
* Returns true if the bitmap is empty (cardinality is zero).
*/
bool isEmpty() const {
return std::all_of(roarings.cbegin(), roarings.cend(),
[](const std::pair<uint32_t, Roaring> &map_entry) {
return map_entry.second.isEmpty();
});
}
/**
* Returns true if the bitmap is full (cardinality is max uint64_t + 1).
*/
bool isFull() const {
// only bother to check if map is fully saturated
//
// we put std::numeric_limits<>::max/min in parenthesis
// to avoid a clash with the Windows.h header under Windows
return roarings.size() ==
((size_t)(std::numeric_limits<uint32_t>::max)()) + 1
? std::all_of(
roarings.cbegin(), roarings.cend(),
[](const std::pair<uint32_t, Roaring> &roaring_map_entry) {
// roarings within map are saturated if cardinality
// is uint32_t max + 1
return roaring_map_entry.second.cardinality() ==
((uint64_t)
(std::numeric_limits<uint32_t>::max)()) +
1;
})
: false;
}
/**
* Returns true if the bitmap is subset of the other.
*/
bool isSubset(const Roaring64Map &r) const {
for (const auto &map_entry : roarings) {
auto roaring_iter = r.roarings.find(map_entry.first);
if (roaring_iter == roarings.cend())
return false;
else if (!map_entry.second.isSubset(roaring_iter->second))
return false;
}
return true;
}
/**
* Returns true if the bitmap is strict subset of the other.
* Throws std::length_error in the special case where the bitmap is full
* (cardinality() == 2^64). Check isFull() before calling to avoid exception.
*/
bool isStrictSubset(const Roaring64Map &r) const {
return isSubset(r) && cardinality() != r.cardinality();
}
/**
* Convert the bitmap to an array. Write the output to "ans",
* caller is responsible to ensure that there is enough memory
* allocated
* (e.g., ans = new uint32[mybitmap.cardinality()];)
*/
void toUint64Array(uint64_t *ans) const {
// Annoyingly, VS 2017 marks std::accumulate() as [[nodiscard]]
(void)std::accumulate(roarings.cbegin(), roarings.cend(), ans,
[](uint64_t *previous,
const std::pair<uint32_t, Roaring> &map_entry) {
for (uint32_t low_bits : map_entry.second)
*previous++ =
uniteBytes(map_entry.first, low_bits);
return previous;
});
}
/**
* Return true if the two bitmaps contain the same elements.
*/
bool operator==(const Roaring64Map &r) const {
// we cannot use operator == on the map because either side may contain
// empty Roaring Bitmaps
auto lhs_iter = roarings.cbegin();
auto rhs_iter = r.roarings.cbegin();
do {
// if the left map has reached its end, ensure that the right map
// contains only empty Bitmaps
if (lhs_iter == roarings.cend()) {
while (rhs_iter != r.roarings.cend()) {
if (rhs_iter->second.isEmpty()) {
++rhs_iter;
continue;
}
return false;
}
return true;
}
// if the left map has an empty bitmap, skip it
if (lhs_iter->second.isEmpty()) {
++lhs_iter;
continue;
}
do {
// if the right map has reached its end, ensure that the right
// map contains only empty Bitmaps
if (rhs_iter == r.roarings.cend()) {
while (lhs_iter != roarings.cend()) {
if (lhs_iter->second.isEmpty()) {
++lhs_iter;
continue;
}
return false;
}
return true;
}
// if the right map has an empty bitmap, skip it
if (rhs_iter->second.isEmpty()) {
++rhs_iter;
continue;
}
} while (false);
// if neither map has reached its end ensure elements are equal and
// move to the next element in both
} while (lhs_iter++->second == rhs_iter++->second);
return false;
}
/**
* compute the negation of the roaring bitmap within a specified interval.
* areas outside the range are passed through unchanged.
*/
void flip(uint64_t range_start, uint64_t range_end) {
uint32_t start_high = highBytes(range_start);
uint32_t start_low = lowBytes(range_start);
uint32_t end_high = highBytes(range_end);
uint32_t end_low = lowBytes(range_end);
if (start_high == end_high) {
roarings[start_high].flip(start_low, end_low);
return;
}
// we put std::numeric_limits<>::max/min in parenthesis
// to avoid a clash with the Windows.h header under Windows
roarings[start_high].flip(start_low,
(std::numeric_limits<uint32_t>::max)());
roarings[start_high++].setCopyOnWrite(copyOnWrite);
for (; start_high <= highBytes(range_end) - 1; ++start_high) {
roarings[start_high].flip((std::numeric_limits<uint32_t>::min)(),
(std::numeric_limits<uint32_t>::max)());
roarings[start_high].setCopyOnWrite(copyOnWrite);
}
roarings[start_high].flip((std::numeric_limits<uint32_t>::min)(),
end_low);
roarings[start_high].setCopyOnWrite(copyOnWrite);
}
/**
* Remove run-length encoding even when it is more space efficient
* return whether a change was applied
*/
bool removeRunCompression() {
return std::accumulate(
roarings.begin(), roarings.end(), true,
[](bool previous, std::pair<const uint32_t, Roaring> &map_entry) {
return map_entry.second.removeRunCompression() && previous;
});
}
/** convert array and bitmap containers to run containers when it is more
* efficient;
* also convert from run containers when more space efficient. Returns
* true if the result has at least one run container.
* Additional savings might be possible by calling shrinkToFit().
*/
bool runOptimize() {
return std::accumulate(
roarings.begin(), roarings.end(), true,
[](bool previous, std::pair<const uint32_t, Roaring> &map_entry) {
return map_entry.second.runOptimize() && previous;
});
}
/**
* If needed, reallocate memory to shrink the memory usage. Returns
* the number of bytes saved.
*/
size_t shrinkToFit() {
size_t savedBytes = 0;
auto iter = roarings.begin();
while (iter != roarings.cend()) {
if (iter->second.isEmpty()) {
// empty Roarings are 84 bytes
savedBytes += 88;
roarings.erase(iter++);
} else {
savedBytes += iter->second.shrinkToFit();
iter++;
}
}
return savedBytes;
}
/**
* Iterate over the bitmap elements. The function iterator is called once
* for all the values with ptr (can be NULL) as the second parameter of each
* call.
*
* roaring_iterator is simply a pointer to a function that returns bool
* (true means that the iteration should continue while false means that it
* should stop), and takes (uint32_t,void*) as inputs.
*/
void iterate(roaring_iterator64 iterator, void *ptr) const {
std::for_each(roarings.begin(), roarings.cend(),
[=](const std::pair<uint32_t, Roaring> &map_entry) {
roaring_iterate64(&map_entry.second.roaring, iterator,
uint64_t(map_entry.first) << 32,
ptr);
});
}
/**
* If the size of the roaring bitmap is strictly greater than rank, then
this
function returns true and set element to the element of given rank.
Otherwise, it returns false.
*/
bool select(uint64_t rnk, uint64_t *element) const {
for (const auto &map_entry : roarings) {
uint64_t sub_cardinality = (uint64_t)map_entry.second.cardinality();
if (rnk < sub_cardinality) {
*element = ((uint64_t)map_entry.first) << 32;
// assuming little endian
return map_entry.second.select((uint32_t)rnk,
((uint32_t *)element));
}
rnk -= sub_cardinality;
}
return false;
}
/**
* Returns the number of integers that are smaller or equal to x.
*/
uint64_t rank(uint64_t x) const {
uint64_t result = 0;
auto roaring_destination = roarings.find(highBytes(x));
if (roaring_destination != roarings.cend()) {
for (auto roaring_iter = roarings.cbegin();
roaring_iter != roaring_destination; ++roaring_iter) {
result += roaring_iter->second.cardinality();
}
result += roaring_destination->second.rank(lowBytes(x));
return result;
}
roaring_destination = roarings.lower_bound(highBytes(x));
for (auto roaring_iter = roarings.cbegin();
roaring_iter != roaring_destination; ++roaring_iter) {
result += roaring_iter->second.cardinality();
}
return result;
}
/**
* write a bitmap to a char buffer. This is meant to be compatible with
* the
* Java and Go versions. Returns how many bytes were written which should be
* getSizeInBytes().
*
* Setting the portable flag to false enable a custom format that
* can save space compared to the portable format (e.g., for very
* sparse bitmaps).
*/
size_t write(char *buf, bool portable = true) const {
const char *orig = buf;
// push map size
*((uint64_t *)buf) = roarings.size();
buf += sizeof(uint64_t);
std::for_each(
roarings.cbegin(), roarings.cend(),
[&buf, portable](const std::pair<uint32_t, Roaring> &map_entry) {
// push map key
memcpy(buf, &map_entry.first,
sizeof(uint32_t)); // this is undefined:
// *((uint32_t*)buf) =
// map_entry.first;
buf += sizeof(uint32_t);
// push map value Roaring
buf += map_entry.second.write(buf, portable);
});
return buf - orig;
}
/**
* read a bitmap from a serialized version. This is meant to be compatible
* with
* the
* Java and Go versions.
*
* Setting the portable flag to false enable a custom format that
* can save space compared to the portable format (e.g., for very
* sparse bitmaps).
*
* This function is unsafe in the sense that if you provide bad data,
* many bytes could be read, possibly causing a buffer overflow. See also readSafe.
*/
static Roaring64Map read(const char *buf, bool portable = true) {
Roaring64Map result;
// get map size
uint64_t map_size = *((uint64_t *)buf);
buf += sizeof(uint64_t);
for (uint64_t lcv = 0; lcv < map_size; lcv++) {
// get map key
uint32_t key;
memcpy(&key, buf, sizeof(uint32_t)); // this is undefined: uint32_t
// key = *((uint32_t*)buf);
buf += sizeof(uint32_t);
// read map value Roaring
Roaring read = Roaring::read(buf, portable);
result.emplaceOrInsert(key, read);
// forward buffer past the last Roaring Bitmap
buf += read.getSizeInBytes(portable);
}
return result;
}
/**
* read a bitmap from a serialized version, reading no more than maxbytes bytes.
* This is meant to be compatible with the Java and Go versions.
*
* Setting the portable flag to false enable a custom format that
* can save space compared to the portable format (e.g., for very
* sparse bitmaps).
*/
static Roaring64Map readSafe(const char *buf, size_t maxbytes) {
Roaring64Map result;
// get map size
uint64_t map_size = *((uint64_t *)buf);
buf += sizeof(uint64_t);
for (uint64_t lcv = 0; lcv < map_size; lcv++) {
// get map key
if(maxbytes < sizeof(uint32_t)) {
throw std::runtime_error("ran out of bytes");
}
uint32_t key;
memcpy(&key, buf, sizeof(uint32_t)); // this is undefined: uint32_t
// key = *((uint32_t*)buf);
buf += sizeof(uint32_t);
maxbytes -= sizeof(uint32_t);
// read map value Roaring
Roaring read = Roaring::readSafe(buf, maxbytes);
result.emplaceOrInsert(key, read);
// forward buffer past the last Roaring Bitmap
size_t tz = read.getSizeInBytes(true);
buf += tz;
maxbytes -= tz;
}
return result;
}
/**
* How many bytes are required to serialize this bitmap (meant to be
* compatible
* with Java and Go versions)
*
* Setting the portable flag to false enable a custom format that
* can save space compared to the portable format (e.g., for very
* sparse bitmaps).
*/
size_t getSizeInBytes(bool portable = true) const {
// start with, respectively, map size and size of keys for each map
// entry
return std::accumulate(
roarings.cbegin(), roarings.cend(),
sizeof(uint64_t) + roarings.size() * sizeof(uint32_t),
[=](size_t previous,
const std::pair<uint32_t, Roaring> &map_entry) {
// add in bytes used by each Roaring
return previous + map_entry.second.getSizeInBytes(portable);
});
}
/**
* Computes the intersection between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*/
Roaring64Map operator&(const Roaring64Map &o) const {
return Roaring64Map(*this) &= o;
}
/**
* Computes the difference between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*/
Roaring64Map operator-(const Roaring64Map &o) const {
return Roaring64Map(*this) -= o;
}
/**
* Computes the union between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*/
Roaring64Map operator|(const Roaring64Map &o) const {
return Roaring64Map(*this) |= o;
}
/**
* Computes the symmetric union between two bitmaps and returns new bitmap.
* The current bitmap and the provided bitmap are unchanged.
*/
Roaring64Map operator^(const Roaring64Map &o) const {
return Roaring64Map(*this) ^= o;
}
/**
* Whether or not we apply copy and write.
*/
void setCopyOnWrite(bool val) {
if (copyOnWrite == val) return;
copyOnWrite = val;
std::for_each(roarings.begin(), roarings.end(),
[=](std::pair<const uint32_t, Roaring> &map_entry) {
map_entry.second.setCopyOnWrite(val);
});
}
/**
* Print the content of the bitmap
*/
void printf() const {
if (!isEmpty()) {
auto map_iter = roarings.cbegin();
while (map_iter->second.isEmpty()) ++map_iter;
struct iter_data {
uint32_t high_bits;
char first_char = '{';
} outer_iter_data;
outer_iter_data.high_bits = roarings.begin()->first;
map_iter->second.iterate(
[](uint32_t low_bits, void *inner_iter_data) -> bool {
std::printf("%c%llu",
((iter_data *)inner_iter_data)->first_char,
(long long unsigned)uniteBytes(
((iter_data *)inner_iter_data)->high_bits,
low_bits));
((iter_data *)inner_iter_data)->first_char = ',';
return true;
},
(void *)&outer_iter_data);
std::for_each(
++map_iter, roarings.cend(),
[](const std::pair<uint32_t, Roaring> &map_entry) {
map_entry.second.iterate(
[](uint32_t low_bits, void *high_bits) -> bool {
std::printf(",%llu",
(long long unsigned)uniteBytes(
*(uint32_t *)high_bits, low_bits));
return true;
},
(void *)&map_entry.first);
});
} else
std::printf("{");
std::printf("}\n");
}
/**
* Print the content of the bitmap into a string
*/
std::string toString() const {
struct iter_data {
std::string str;
uint32_t high_bits;
char first_char = '{';
} outer_iter_data;
if (!isEmpty()) {
auto map_iter = roarings.cbegin();
while (map_iter->second.isEmpty()) ++map_iter;
outer_iter_data.high_bits = roarings.begin()->first;
map_iter->second.iterate(
[](uint32_t low_bits, void *inner_iter_data) -> bool {
((iter_data *)inner_iter_data)->str +=
((iter_data *)inner_iter_data)->first_char;
((iter_data *)inner_iter_data)->str += std::to_string(
uniteBytes(((iter_data *)inner_iter_data)->high_bits,
low_bits));
((iter_data *)inner_iter_data)->first_char = ',';
return true;
},
(void *)&outer_iter_data);
std::for_each(
++map_iter, roarings.cend(),
[&outer_iter_data](
const std::pair<uint32_t, Roaring> &map_entry) {
outer_iter_data.high_bits = map_entry.first;
map_entry.second.iterate(
[](uint32_t low_bits, void *inner_iter_data) -> bool {
((iter_data *)inner_iter_data)->str +=
((iter_data *)inner_iter_data)->first_char;
((iter_data *)inner_iter_data)->str +=
std::to_string(uniteBytes(
((iter_data *)inner_iter_data)->high_bits,
low_bits));
return true;
},
(void *)&outer_iter_data);
});
} else
outer_iter_data.str = '{';
outer_iter_data.str += '}';
return outer_iter_data.str;
}
/**
* Whether or not copy and write is active.
*/
bool getCopyOnWrite() const { return copyOnWrite; }
/**
* computes the logical or (union) between "n" bitmaps (referenced by a
* pointer).
*/
static Roaring64Map fastunion(size_t n, const Roaring64Map **inputs) {
Roaring64Map ans;
// not particularly fast
for (size_t lcv = 0; lcv < n; ++lcv) {
ans |= *(inputs[lcv]);
}
return ans;
}
friend class Roaring64MapSetBitForwardIterator;
friend class Roaring64MapSetBitBiDirectionalIterator;
typedef Roaring64MapSetBitForwardIterator const_iterator;
typedef Roaring64MapSetBitBiDirectionalIterator const_bidirectional_iterator;
/**
* Returns an iterator that can be used to access the position of the
* set bits. The running time complexity of a full scan is proportional to
* the
* number
* of set bits: be aware that if you have long strings of 1s, this can be
* very inefficient.
*
* It can be much faster to use the toArray method if you want to
* retrieve the set bits.
*/
const_iterator begin() const;
/**
* A bogus iterator that can be used together with begin()
* for constructions such as for(auto i = b.begin();
* i!=b.end(); ++i) {}
*/
const_iterator end() const;
private:
std::map<uint32_t, Roaring> roarings;
bool copyOnWrite = false;
static uint32_t highBytes(const uint64_t in) { return uint32_t(in >> 32); }
static uint32_t lowBytes(const uint64_t in) { return uint32_t(in); }
static uint64_t uniteBytes(const uint32_t highBytes,
const uint32_t lowBytes) {
return (uint64_t(highBytes) << 32) | uint64_t(lowBytes);
}
// this is needed to tolerate gcc's C++11 libstdc++ lacking emplace
// prior to version 4.8
void emplaceOrInsert(const uint32_t key, const Roaring &value) {
#if defined(__GLIBCXX__) && __GLIBCXX__ < 20130322
roarings.insert(std::make_pair(key, value));
#else
roarings.emplace(std::make_pair(key, value));
#endif
}
};
/**
* Used to go through the set bits. Not optimally fast, but convenient.
*/
class Roaring64MapSetBitForwardIterator {
public:
typedef std::forward_iterator_tag iterator_category;
typedef uint64_t *pointer;
typedef uint64_t &reference_type;
typedef uint64_t value_type;
typedef int64_t difference_type;
typedef Roaring64MapSetBitForwardIterator type_of_iterator;
/**
* Provides the location of the set bit.
*/
value_type operator*() const {
return Roaring64Map::uniteBytes(map_iter->first, i.current_value);
}
bool operator<(const type_of_iterator &o) {
if (map_iter == map_end) return false;
if (o.map_iter == o.map_end) return true;
return **this < *o;
}
bool operator<=(const type_of_iterator &o) {
if (o.map_iter == o.map_end) return true;
if (map_iter == map_end) return false;
return **this <= *o;
}
bool operator>(const type_of_iterator &o) {
if (o.map_iter == o.map_end) return false;
if (map_iter == map_end) return true;
return **this > *o;
}
bool operator>=(const type_of_iterator &o) {
if (map_iter == map_end) return true;
if (o.map_iter == o.map_end) return false;
return **this >= *o;
}
type_of_iterator &operator++() { // ++i, must returned inc. value
if (i.has_value == true) roaring_advance_uint32_iterator(&i);
while (!i.has_value) {
map_iter++;
if (map_iter == map_end) return *this;
roaring_init_iterator(&map_iter->second.roaring, &i);
}
return *this;
}
type_of_iterator operator++(int) { // i++, must return orig. value
Roaring64MapSetBitForwardIterator orig(*this);
roaring_advance_uint32_iterator(&i);
while (!i.has_value) {
map_iter++;
if (map_iter == map_end) return orig;
roaring_init_iterator(&map_iter->second.roaring, &i);
}
return orig;
}
bool move(const value_type& x) {
map_iter = p.lower_bound(Roaring64Map::highBytes(x));
if (map_iter != p.cend()) {
roaring_init_iterator(&map_iter->second.roaring, &i);
if (map_iter->first == Roaring64Map::highBytes(x)) {
if (roaring_move_uint32_iterator_equalorlarger(&i, Roaring64Map::lowBytes(x)))
return true;
map_iter++;
if (map_iter == map_end) return false;
roaring_init_iterator(&map_iter->second.roaring, &i);
}
return true;
}
return false;
}
bool operator==(const Roaring64MapSetBitForwardIterator &o) {
if (map_iter == map_end && o.map_iter == o.map_end) return true;
if (o.map_iter == o.map_end) return false;
return **this == *o;
}
bool operator!=(const Roaring64MapSetBitForwardIterator &o) {
if (map_iter == map_end && o.map_iter == o.map_end) return false;
if (o.map_iter == o.map_end) return true;
return **this != *o;
}
Roaring64MapSetBitForwardIterator &operator=(const Roaring64MapSetBitForwardIterator& r) {
map_iter = r.map_iter;
map_end = r.map_end;
i = r.i;
return *this;
}
Roaring64MapSetBitForwardIterator(const Roaring64Map &parent,
bool exhausted = false)
: p(parent.roarings), map_end(parent.roarings.cend()) {
if (exhausted || parent.roarings.empty()) {
map_iter = parent.roarings.cend();
} else {
map_iter = parent.roarings.cbegin();
roaring_init_iterator(&map_iter->second.roaring, &i);
while (!i.has_value) {
map_iter++;
if (map_iter == map_end) return;
roaring_init_iterator(&map_iter->second.roaring, &i);
}
}
}
protected:
const std::map<uint32_t, Roaring>& p;
std::map<uint32_t, Roaring>::const_iterator map_iter;
std::map<uint32_t, Roaring>::const_iterator map_end;
roaring_uint32_iterator_t i;
};
class Roaring64MapSetBitBiDirectionalIterator final :public Roaring64MapSetBitForwardIterator {
public:
Roaring64MapSetBitBiDirectionalIterator(const Roaring64Map &parent,
bool exhausted = false)
: Roaring64MapSetBitForwardIterator(parent, exhausted), map_begin(parent.roarings.cbegin()) {}
Roaring64MapSetBitBiDirectionalIterator &operator=(const Roaring64MapSetBitForwardIterator& r) {
*(Roaring64MapSetBitForwardIterator*)this = r;
return *this;
}
type_of_iterator& operator--() { // --i, must return dec.value
if (map_iter == map_end) {
--map_iter;
roaring_init_iterator_last(&map_iter->second.roaring, &i);
if (i.has_value) return *this;
}
roaring_previous_uint32_iterator(&i);
while (!i.has_value) {
if (map_iter == map_begin) return *this;
map_iter--;
roaring_init_iterator_last(&map_iter->second.roaring, &i);
}
return *this;
}
type_of_iterator operator--(int) { // i--, must return orig. value
Roaring64MapSetBitBiDirectionalIterator orig(*this);
if (map_iter == map_end) {
--map_iter;
roaring_init_iterator_last(&map_iter->second.roaring, &i);
return orig;
}
roaring_previous_uint32_iterator(&i);
while (!i.has_value) {
if (map_iter == map_begin) return orig;
map_iter--;
roaring_init_iterator_last(&map_iter->second.roaring, &i);
}
return orig;
}
protected:
std::map<uint32_t, Roaring>::const_iterator map_begin;
};
inline Roaring64MapSetBitForwardIterator Roaring64Map::begin() const {
return Roaring64MapSetBitForwardIterator(*this);
}
inline Roaring64MapSetBitForwardIterator Roaring64Map::end() const {
return Roaring64MapSetBitForwardIterator(*this, true);
}
#endif /* INCLUDE_ROARING_64_MAP_HH_ */
|