File: cpp_unit.cpp

package info (click to toggle)
croaring 0.2.66%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 2,136 kB
  • sloc: ansic: 25,557; cpp: 1,426; sh: 403; python: 81; makefile: 11
file content (614 lines) | stat: -rw-r--r-- 18,984 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/**
* The purpose of this test is to check that we can call CRoaring from C++
*/

#include <type_traits>
#include <assert.h>
#include <roaring/roaring.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include "roaring.hh"
#include "roaring64map.hh"
extern "C" {
#include "test.h"
}


static_assert(std::is_nothrow_move_constructible<Roaring>::value,
        "Expected Roaring to be no except move constructable");

bool roaring_iterator_sumall(uint32_t value, void *param) {
    *(uint32_t *)param += value;
    return true;  // we always process all values
}

bool roaring_iterator_sumall64(uint64_t value, void *param) {
    *(uint64_t *)param += value;
    return true;  // we always process all values
}


void serial_test(void **) {
  uint32_t values[] = {5, 2, 3, 4, 1};
  Roaring r1(sizeof(values)/sizeof(uint32_t), values);
  uint32_t serializesize = r1.getSizeInBytes();
  char *serializedbytes = new char [serializesize];
  r1.write(serializedbytes);
  Roaring t = Roaring::read(serializedbytes);
  assert_true(r1 == t);
  char *copy = new char[serializesize];
  memcpy(copy, serializedbytes, serializesize);
  Roaring t2 = Roaring::read(copy);
  assert_true(t2== t);
  delete[] serializedbytes;
  delete[] copy;
}

void test_example(bool copy_on_write) {
    // create a new empty bitmap
    roaring_bitmap_t *r1 = roaring_bitmap_create();
    roaring_bitmap_set_copy_on_write(r1, copy_on_write);
    assert_ptr_not_equal(r1, NULL);

    // then we can add values
    for (uint32_t i = 100; i < 1000; i++) {
        roaring_bitmap_add(r1, i);
    }
    // check whether a value is contained
    assert_true(roaring_bitmap_contains(r1, 500));

    // compute how many bits there are:
    uint64_t cardinality = roaring_bitmap_get_cardinality(r1);
    printf("Cardinality = %d \n", (int)cardinality);
    assert_int_equal(900, cardinality);

    // if your bitmaps have long runs, you can compress them by calling
    // run_optimize
    size_t size = roaring_bitmap_portable_size_in_bytes(r1);
    roaring_bitmap_run_optimize(r1);
    size_t compact_size = roaring_bitmap_portable_size_in_bytes(r1);
    printf("size before run optimize %zu bytes, and after %zu bytes\n", size,
           compact_size);
    // create a new bitmap with varargs
    roaring_bitmap_t *r2 = roaring_bitmap_of(5, 1, 2, 3, 5, 6);
    assert_ptr_not_equal(r2, NULL);
    roaring_bitmap_printf(r2);
    printf("\n");
    // we can also create a bitmap from a pointer to 32-bit integers
    const uint32_t values[] = {2, 3, 4};
    roaring_bitmap_t *r3 = roaring_bitmap_of_ptr(3, values);
    roaring_bitmap_set_copy_on_write(r3, copy_on_write);
    // we can also go in reverse and go from arrays to bitmaps
    uint64_t card1 = roaring_bitmap_get_cardinality(r1);
    uint32_t *arr1 = new uint32_t[card1];
    assert_ptr_not_equal(arr1, NULL);
    roaring_bitmap_to_uint32_array(r1, arr1);

    roaring_bitmap_t *r1f = roaring_bitmap_of_ptr(card1, arr1);
    delete[] arr1;
    assert_ptr_not_equal(r1f, NULL);

    // bitmaps shall be equal
    assert_true(roaring_bitmap_equals(r1, r1f));
    roaring_bitmap_free(r1f);

    // we can copy and compare bitmaps
    roaring_bitmap_t *z = roaring_bitmap_copy(r3);
    roaring_bitmap_set_copy_on_write(z, copy_on_write);
    assert_true(roaring_bitmap_equals(r3, z));

    roaring_bitmap_free(z);

    // we can compute union two-by-two
    roaring_bitmap_t *r1_2_3 = roaring_bitmap_or(r1, r2);
    roaring_bitmap_set_copy_on_write(r1_2_3, copy_on_write);
    roaring_bitmap_or_inplace(r1_2_3, r3);

    // we can compute a big union
    const roaring_bitmap_t *allmybitmaps[] = {r1, r2, r3};
    roaring_bitmap_t *bigunion = roaring_bitmap_or_many(3, allmybitmaps);
    assert_true(roaring_bitmap_equals(r1_2_3, bigunion));
    roaring_bitmap_t *bigunionheap =
        roaring_bitmap_or_many_heap(3, allmybitmaps);
    assert_true(roaring_bitmap_equals(r1_2_3, bigunionheap));
    roaring_bitmap_free(r1_2_3);
    roaring_bitmap_free(bigunion);
    roaring_bitmap_free(bigunionheap);

    // we can compute intersection two-by-two
    roaring_bitmap_t *i1_2 = roaring_bitmap_and(r1, r2);
    roaring_bitmap_free(i1_2);

    // we can write a bitmap to a pointer and recover it later
    size_t expectedsize = roaring_bitmap_portable_size_in_bytes(r1);
    char *serializedbytes = (char *)malloc(expectedsize);
    roaring_bitmap_portable_serialize(r1, serializedbytes);
    roaring_bitmap_t *t = roaring_bitmap_portable_deserialize(serializedbytes);
    assert_true(expectedsize == roaring_bitmap_portable_size_in_bytes(t));
    assert_true(roaring_bitmap_equals(r1, t));
    roaring_bitmap_free(t);
    free(serializedbytes);

    // we can iterate over all values using custom functions
    uint32_t counter = 0;
    roaring_iterate(r1, roaring_iterator_sumall, &counter);
    /**
     * void roaring_iterator_sumall(uint32_t value, void *param) {
     *        *(uint32_t *) param += value;
     *  }
     *
     */

    roaring_bitmap_free(r1);
    roaring_bitmap_free(r2);
    roaring_bitmap_free(r3);
}

void test_example_cpp(bool copy_on_write) {
    // create a new empty bitmap
    Roaring r1;
    r1.setCopyOnWrite(copy_on_write);
    // then we can add values
    for (uint32_t i = 100; i < 1000; i++) {
        r1.add(i);
    }

    // check whether a value is contained
    assert_true(r1.contains(500));

    // compute how many bits there are:
    uint64_t cardinality = r1.cardinality();
    std::cout << "Cardinality = " << cardinality << std::endl;

    // if your bitmaps have long runs, you can compress them by calling
    // run_optimize
    size_t size = r1.getSizeInBytes();
    r1.runOptimize();
    size_t compact_size = r1.getSizeInBytes();

    std::cout << "size before run optimize " << size << " bytes, and after "
              << compact_size << " bytes." << std::endl;

    // create a new bitmap with varargs
    Roaring r2 = Roaring::bitmapOf(5, 1, 2, 3, 5, 6);

    r2.printf();
    printf("\n");

    // test select
    uint32_t element;
    r2.select(3, &element);
    assert_true(element == 5);

    assert_true(r2.minimum() == 1);

    assert_true(r2.maximum() == 6);

    assert_true(r2.rank(4) == 3);

    // we can also create a bitmap from a pointer to 32-bit integers
    const uint32_t values[] = {2, 3, 4};
    Roaring r3(3, values);
    r3.setCopyOnWrite(copy_on_write);

    // we can also go in reverse and go from arrays to bitmaps
    uint64_t card1 = r1.cardinality();
    uint32_t *arr1 = new uint32_t[card1];
    assert_true(arr1 != NULL);
    r1.toUint32Array(arr1);
    Roaring r1f(card1, arr1);
    delete[] arr1;

    // bitmaps shall be equal
    assert_true(r1 == r1f);

    // we can copy and compare bitmaps
    Roaring z(r3);
    z.setCopyOnWrite(copy_on_write);
    assert_true(r3 == z);

    // we can compute union two-by-two
    Roaring r1_2_3 = r1 | r2;
    r1_2_3.setCopyOnWrite(copy_on_write);
    r1_2_3 |= r3;

    // we can compute a big union
    const Roaring *allmybitmaps[] = {&r1, &r2, &r3};
    Roaring bigunion = Roaring::fastunion(3, allmybitmaps);
    assert_true(r1_2_3 == bigunion);

    // we can compute intersection two-by-two
    Roaring i1_2 = r1 & r2;

    // we can write a bitmap to a pointer and recover it later
    size_t expectedsize = r1.getSizeInBytes();
    char *serializedbytes = new char[expectedsize];
    r1.write(serializedbytes);
    Roaring t = Roaring::read(serializedbytes);
    assert_true(expectedsize == t.getSizeInBytes());
    assert_true(r1 == t);

    Roaring t2 = Roaring::readSafe(serializedbytes,expectedsize);
    assert_true(expectedsize == t2.getSizeInBytes());
    assert_true(r1 == t2);

    delete[] serializedbytes;

    // we can iterate over all values using custom functions
    uint32_t counter = 0;
    r1.iterate(roaring_iterator_sumall, &counter);
    /**
     * void roaring_iterator_sumall(uint32_t value, void *param) {
     *        *(uint32_t *) param += value;
     *  }
     *
     */
    // we can also iterate the C++ way
    counter = 0;
    for (Roaring::const_iterator i = t.begin(); i != t.end(); i++) {
        ++counter;
    }
    assert_true(counter == t.cardinality());

    // we can move iterators
    const uint32_t manyvalues[] = {2, 3, 4, 7, 8};
    Roaring rogue(5, manyvalues);
    Roaring::const_iterator j = rogue.begin();
    j.equalorlarger(4);
    assert_true(*j == 4);


    // test move constructor
    {
        Roaring b;
        b.add(10);
        b.add(20);

        Roaring a(std::move(b));
        assert_true(a.cardinality() == 2);
        assert_true(a.contains(10));
        assert_true(a.contains(20));

        // b should be destroyed without any errors
        assert_true(b.cardinality() == 0);
    }

    // test move operator
    {
        Roaring b;
        b.add(10);
        b.add(20);

        Roaring a;

        a = std::move(b);
        assert_int_equal(2, a.cardinality());
        assert_true(a.contains(10));
        assert_true(a.contains(20));

        // b should be destroyed without any errors
        assert_int_equal(0, b.cardinality());
    }

    // test toString
    {
        Roaring a;
        a.add(1);
        a.add(2);
        a.add(3);
        a.add(4);

        assert_string_equal("{1,2,3,4}", a.toString().c_str());
    }
}

void test_run_compression_cpp(bool copy_on_write) {
  Roaring r1;
  r1.setCopyOnWrite(copy_on_write);
  for (uint32_t i = 100; i <= 10000; i++) {
    r1.add(i);
  }
  uint64_t size_origin = r1.getSizeInBytes();
  bool has_run = r1.runOptimize();
  uint64_t size_optimized = r1.getSizeInBytes();
  assert_true(has_run);
  assert_true(size_origin > size_optimized);
  bool removed = r1.removeRunCompression();
  assert_true(removed);
  uint64_t size_removed = r1.getSizeInBytes();
  assert_true(size_removed > size_optimized);
  return;
}


void test_run_compression_cpp_64(bool copy_on_write) {
  Roaring64Map r1;
  r1.setCopyOnWrite(copy_on_write);
  for (uint64_t i = 100; i <= 10000; i++) {
    r1.add(i);
  }
  uint64_t size_origin = r1.getSizeInBytes();
  bool has_run = r1.runOptimize();
  uint64_t size_optimized = r1.getSizeInBytes();
  assert_true(has_run);
  assert_true(size_origin > size_optimized);
  bool removed = r1.removeRunCompression();
  assert_true(removed);
  uint64_t size_removed = r1.getSizeInBytes();
  assert_true(size_removed > size_optimized);
  return;
}

void test_example_cpp_64(bool copy_on_write) {
    // create a new empty bitmap
    Roaring64Map r1;
    r1.setCopyOnWrite(copy_on_write);
    // then we can add values
    for (uint64_t i = 100; i < 1000; i++) {
        r1.add(i);
    }
    for (uint64_t i = 14000000000000000100ull; i < 14000000000000001000ull;
         i++) {
        r1.add(i);
    }

    // check whether a value is contained
    assert_true(r1.contains((uint64_t)14000000000000000500ull));

    // compute how many bits there are:
    uint64_t cardinality = r1.cardinality();
    std::cout << "Cardinality = " << cardinality << std::endl;

    // if your bitmaps have long runs, you can compress them by calling
    // run_optimize
    uint64_t size = r1.getSizeInBytes();
    r1.runOptimize();
    uint64_t compact_size = r1.getSizeInBytes();

    std::cout << "size before run optimize " << size << " bytes, and after "
              << compact_size << " bytes." << std::endl;

    // create a new bitmap with varargs
    Roaring64Map r2 =
        Roaring64Map::bitmapOf(5, 1ull, 2ull, 234294967296ull, 195839473298ull,
                               14000000000000000100ull);

    r2.printf();
    printf("\n");

    // test select
    uint64_t element;
    r2.select(4, &element);
    assert_true(element == 14000000000000000100ull);

    assert_true(r2.minimum() == 1ull);

    assert_true(r2.maximum() == 14000000000000000100ull);

    assert_true(r2.rank(234294967296ull) == 4ull);

    // we can also create a bitmap from a pointer to 32-bit integers
    const uint32_t values[] = {2, 3, 4};
    Roaring64Map r3(3, values);
    r3.setCopyOnWrite(copy_on_write);

    // we can also go in reverse and go from arrays to bitmaps
    uint64_t card1 = r1.cardinality();
    uint64_t *arr1 = new uint64_t[card1];
    assert_true(arr1 != NULL);
    r1.toUint64Array(arr1);
    Roaring64Map r1f(card1, arr1);
    delete[] arr1;

    // bitmaps shall be equal
    assert_true(r1 == r1f);

    // we can copy and compare bitmaps
    Roaring64Map z(r3);
    z.setCopyOnWrite(copy_on_write);
    assert_true(r3 == z);

    // we can compute union two-by-two
    Roaring64Map r1_2_3 = r1 | r2;
    r1_2_3.setCopyOnWrite(copy_on_write);
    r1_2_3 |= r3;

    // we can compute a big union
    const Roaring64Map *allmybitmaps[] = {&r1, &r2, &r3};
    Roaring64Map bigunion = Roaring64Map::fastunion(3, allmybitmaps);
    assert_true(r1_2_3 == bigunion);

    // we can compute intersection two-by-two
    Roaring64Map i1_2 = r1 & r2;

    // we can write a bitmap to a pointer and recover it later
    size_t expectedsize = r1.getSizeInBytes();
    char *serializedbytes = new char[expectedsize];
    r1.write(serializedbytes);
    Roaring64Map t = Roaring64Map::read(serializedbytes);
    assert_true(expectedsize == t.getSizeInBytes());
    assert_true(r1 == t);
    delete[] serializedbytes;

    // we can iterate over all values using custom functions
    uint64_t counter = 0;
    r1.iterate(roaring_iterator_sumall64, &counter);
    /**
     * void roaring_iterator_sumall64(uint64_t value, void *param) {
     *        *(uint64_t *) param += value;
     *  }
     *
     */
    // we can also iterate the C++ way
    counter = 0;
    for (Roaring64Map::const_iterator i = t.begin(); i != t.end(); i++) {
        ++counter;
    }
    assert_true(counter == t.cardinality());

    {
        Roaring64Map b;
        b.add(1u);
        b.add(2u);
        b.add(3u);
        assert_int_equal(3, b.cardinality());

        Roaring64Map a(std::move(b));
        assert_int_equal(3, a.cardinality());
        // assert_int_equal(0, b.cardinality()); // no: b is now unspecified.
    }

    {
        Roaring64Map a, b;
        b.add(1u);
        b.add(2u);
        b.add(3u);
		assert_int_equal(3, b.cardinality());

        a = std::move(b);
        assert_int_equal(3, a.cardinality());
        // assert_int_equal(0, b.cardinality()); // no: b is unspecified
    }
}

void test_example_true(void **) { test_example(true); }

void test_example_false(void **) { test_example(false); }

void test_example_cpp_true(void **) { test_example_cpp(true); }

void test_example_cpp_false(void **) { test_example_cpp(false); }

void test_example_cpp_64_true(void **) { test_example_cpp_64(true); }

void test_example_cpp_64_false(void **) { test_example_cpp_64(false); }

void test_run_compression_cpp_64_true(void **) { test_run_compression_cpp_64(true); }

void test_run_compression_cpp_64_false(void **) { test_run_compression_cpp_64(false); }

void test_run_compression_cpp_true(void **) { test_run_compression_cpp(true); }

void test_run_compression_cpp_false(void **) { test_run_compression_cpp(false); }

void test_cpp_add_remove_checked(void **) {
    Roaring roaring;
    uint32_t values[4] = { 123, 9999, 0xFFFFFFF7, 0xFFFFFFFF};
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.addChecked(values[i]));
        assert_false(roaring.addChecked(values[i]));
    }
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.removeChecked(values[i]));
        assert_false(roaring.removeChecked(values[i]));
    }
    assert_true(roaring.isEmpty());
}

void test_cpp_add_remove_checked_64(void **) {
    Roaring64Map roaring;

    uint32_t values32[4] = { 123, 9999, 0xFFFFFFF7, 0xFFFFFFFF};
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.addChecked(values32[i]));
        assert_false(roaring.addChecked(values32[i]));
    }
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.removeChecked(values32[i]));
        assert_false(roaring.removeChecked(values32[i]));
    }

    uint64_t values64[4] = { 123ULL, 0xA00000000AULL, 0xAFFFFFFF7ULL, 0xFFFFFFFFFULL};
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.addChecked(values64[i]));
        assert_false(roaring.addChecked(values64[i]));
    }
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.removeChecked(values64[i]));
        assert_false(roaring.removeChecked(values64[i]));
    }
    assert_true(roaring.isEmpty());
}

void test_cpp_clear_64(void **) {
    Roaring64Map roaring;

    uint64_t values64[4] = { 123ULL, 0xA00000000AULL, 0xAFFFFFFF7ULL, 0xFFFFFFFFFULL};
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.addChecked(values64[i]));
    }

	roaring.clear();
	
    assert_true(roaring.isEmpty());
}

void test_cpp_move_64(void **) {
    Roaring64Map roaring;

    uint64_t values64[4] = { 123ULL, 0xA00000000AULL, 0xAFFFFFFF7ULL, 0xFFFFFFFFFULL};
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.addChecked(values64[i]));
    }

	Roaring64Map::const_iterator i(roaring);
	i.move(123ULL);
	assert_true(*i == 123ULL);
	i.move(0xAFFFFFFF8ULL);
	assert_true(*i == 0xFFFFFFFFFULL);
	assert_false(i.move(0xFFFFFFFFFFULL));
}

void test_cpp_bidirectional_iterator_64(void **) {
    Roaring64Map roaring;

    uint64_t values64[4] = { 123ULL, 0xA00000000AULL, 0xAFFFFFFF7ULL, 0xFFFFFFFFFULL};
    for (int i = 0; i < 4; ++i) {
        assert_true(roaring.addChecked(values64[i]));
    }

	Roaring64Map::const_bidirectional_iterator i(roaring);
	i = roaring.begin();
	assert_true(*i++ == 123ULL);
	assert_true(*i++ == 0xAFFFFFFF7ULL);
	assert_true(*i++ == 0xFFFFFFFFFULL);
	assert_true(*i++ == 0xA00000000AULL);
	assert_true(i == roaring.end());
	assert_true(*--i == 0xA00000000AULL);	
	assert_true(*--i == 0xFFFFFFFFFULL);
	assert_true(*--i == 0xAFFFFFFF7ULL);
	assert_true(*--i == 123ULL);
	assert_true(i == roaring.begin());
	i = roaring.end();
	i--;
	assert_true(*i-- == 0xA00000000AULL);
	assert_true(*i-- == 0xFFFFFFFFFULL);
	assert_true(*i-- == 0xAFFFFFFF7ULL);
	assert_true(*i == 123ULL);
	assert_true(i == roaring.begin());
}

int main() {
    const struct CMUnitTest tests[] = {
        cmocka_unit_test(serial_test),
        cmocka_unit_test(test_example_true),
        cmocka_unit_test(test_example_false),
        cmocka_unit_test(test_example_cpp_true),
        cmocka_unit_test(test_example_cpp_false),
        cmocka_unit_test(test_example_cpp_64_true),
        cmocka_unit_test(test_example_cpp_64_false),
        cmocka_unit_test(test_cpp_add_remove_checked),
        cmocka_unit_test(test_cpp_add_remove_checked_64),
        cmocka_unit_test(test_run_compression_cpp_64_true),
        cmocka_unit_test(test_run_compression_cpp_64_false),
        cmocka_unit_test(test_run_compression_cpp_true),
        cmocka_unit_test(test_run_compression_cpp_false),
		cmocka_unit_test(test_cpp_clear_64),
		cmocka_unit_test(test_cpp_move_64),
		cmocka_unit_test(test_cpp_bidirectional_iterator_64)};

    return cmocka_run_group_tests(tests, NULL, NULL);
}