1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
/*
* static char *rcsid_los_c =
* "$Id: los.c 6770 2007-07-11 20:35:50Z ryo_saeba $";
*/
/*
CrossFire, A Multiplayer game for X-windows
Copyright (C) 2002 Mark Wedel & Crossfire Development Team
Copyright (C) 1992 Frank Tore Johansen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
The authors can be reached via e-mail at crossfire-devel@real-time.com
*/
/* Nov 95 - inserted USE_LIGHTING code stuff in here - b.t. */
#include <global.h>
#include <funcpoint.h>
#include <math.h>
/* Distance must be less than this for the object to be blocked.
* An object is 1.0 wide, so if set to 0.5, it means the object
* that blocks half the view (0.0 is complete block) will
* block view in our tables.
* .4 or less lets you see through walls. .5 is about right.
*/
#define SPACE_BLOCK 0.5
typedef struct blstr {
int x[4],y[4];
int index;
} blocks;
blocks block[MAP_CLIENT_X][MAP_CLIENT_Y];
static void expand_lighted_sight(object *op);
/*
* Used to initialise the array used by the LOS routines.
* What this sets if that x,y blocks the view of bx,by
* This then sets up a relation - for example, something
* at 5,4 blocks view at 5,3 which blocks view at 5,2
* etc. So when we check 5,4 and find it block, we have
* the data to know that 5,3 and 5,2 and 5,1 should also
* be blocked.
*/
static void set_block(int x, int y, int bx, int by) {
int index=block[x][y].index,i;
/* Due to flipping, we may get duplicates - better safe than sorry.
*/
for (i=0; i<index; i++) {
if (block[x][y].x[i] == bx && block[x][y].y[i] == by) return;
}
block[x][y].x[index]=bx;
block[x][y].y[index]=by;
block[x][y].index++;
#ifdef LOS_DEBUG
LOG(llevDebug, "setblock: added %d %d -> %d %d (%d)\n", x, y, bx, by,
block[x][y].index);
#endif
}
/*
* initialises the array used by the LOS routines.
*/
/* since we are only doing the upper left quadrant, only
* these spaces could possibly get blocked, since these
* are the only ones further out that are still possibly in the
* sightline.
*/
void init_block(void) {
int x,y, dx, dy, i;
static int block_x[3] = {-1, -1, 0}, block_y[3] = {-1, 0, -1};
for(x=0;x<MAP_CLIENT_X;x++)
for(y=0;y<MAP_CLIENT_Y;y++) {
block[x][y].index=0;
}
/* The table should be symmetric, so only do the upper left
* quadrant - makes the processing easier.
*/
for (x=1; x<=MAP_CLIENT_X/2; x++) {
for (y=1; y<=MAP_CLIENT_Y/2; y++) {
for (i=0; i< 3; i++) {
dx = x + block_x[i];
dy = y + block_y[i];
/* center space never blocks */
if (x == MAP_CLIENT_X/2 && y == MAP_CLIENT_Y/2) continue;
/* If its a straight line, its blocked */
if ((dx == x && x == MAP_CLIENT_X/2) ||
(dy==y && y == MAP_CLIENT_Y/2)) {
/* For simplicity, we mirror the coordinates to block the other
* quadrants.
*/
set_block(x, y, dx, dy);
if (x == MAP_CLIENT_X/2) {
set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy-1);
} else if (y == MAP_CLIENT_Y/2) {
set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
}
} else {
float d1, r, s,l;
/* We use the algorihm that found out how close the point
* (x,y) is to the line from dx,dy to the center of the viewable
* area. l is the distance from x,y to the line.
* r is more a curiosity - it lets us know what direction (left/right)
* the line is off
*/
d1 = (float) (pow(MAP_CLIENT_X/2 - dx, 2) + pow(MAP_CLIENT_Y/2 - dy,2));
r = (float)((dy-y)*(dy - MAP_CLIENT_Y/2) - (dx-x)*(MAP_CLIENT_X/2-dx))/d1;
s = (float)((dy-y)*(MAP_CLIENT_X/2 - dx ) - (dx-x)*(MAP_CLIENT_Y/2-dy))/d1;
l = FABS(sqrt(d1) * s);
if (l <= SPACE_BLOCK) {
/* For simplicity, we mirror the coordinates to block the other
* quadrants.
*/
set_block(x,y,dx,dy);
set_block(MAP_CLIENT_X - x -1, y, MAP_CLIENT_X - dx - 1, dy);
set_block(x, MAP_CLIENT_Y - y -1, dx, MAP_CLIENT_Y - dy - 1);
set_block(MAP_CLIENT_X -x-1, MAP_CLIENT_Y -y-1, MAP_CLIENT_X - dx-1, MAP_CLIENT_Y - dy-1);
}
}
}
}
}
}
/*
* Used to initialise the array used by the LOS routines.
* x,y are indexes into the blocked[][] array.
* This recursively sets the blocked line of sight view.
* From the blocked[][] array, we know for example
* that if some particular space is blocked, it blocks
* the view of the spaces 'behind' it, and those blocked
* spaces behind it may block other spaces, etc.
* In this way, the chain of visibility is set.
*/
static void set_wall(object *op,int x,int y) {
int i;
for(i=0;i<block[x][y].index;i++) {
int dx=block[x][y].x[i],dy=block[x][y].y[i],ax,ay;
/* ax, ay are the values as adjusted to be in the
* socket look structure.
*/
ax = dx - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
ay = dy - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
if (ax < 0 || ax>=op->contr->socket.mapx ||
ay < 0 || ay>=op->contr->socket.mapy) continue;
#if 0
LOG(llevDebug, "blocked %d %d -> %d %d\n",
dx, dy, ax, ay);
#endif
/* we need to adjust to the fact that the socket
* code wants the los to start from the 0,0
* and not be relative to middle of los array.
*/
op->contr->blocked_los[ax][ay]=100;
set_wall(op,dx,dy);
}
}
/*
* Used to initialise the array used by the LOS routines.
* op is the object, x and y values based on MAP_CLIENT_X and Y.
* this is because they index the blocked[][] arrays.
*/
static void check_wall(object *op,int x,int y) {
int ax, ay;
if(!block[x][y].index)
return;
/* ax, ay are coordinates as indexed into the look window */
ax = x - (MAP_CLIENT_X - op->contr->socket.mapx)/2;
ay = y - (MAP_CLIENT_Y - op->contr->socket.mapy)/2;
/* If the converted coordinates are outside the viewable
* area for the client, return now.
*/
if (ax < 0 || ay < 0 || ax >= op->contr->socket.mapx || ay >= op->contr->socket.mapy)
return;
#if 0
LOG(llevDebug, "check_wall, ax,ay=%d, %d x,y = %d, %d blocksview = %d, %d\n",
ax, ay, x, y, op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2);
#endif
/* If this space is already blocked, prune the processing - presumably
* whatever has set this space to be blocked has done the work and already
* done the dependency chain.
*/
if (op->contr->blocked_los[ax][ay] == 100) return;
if(get_map_flags(op->map, NULL,
op->x + x - MAP_CLIENT_X/2, op->y + y - MAP_CLIENT_Y/2,
NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))
set_wall(op,x,y);
}
/*
* Clears/initialises the los-array associated to the player
* controlling the object.
*/
void clear_los(object *op) {
/* This is safer than using the socket->mapx, mapy because
* we index the blocked_los as a 2 way array, so clearing
* the first z spaces may not not cover the spaces we are
* actually going to use
*/
(void)memset((void *) op->contr->blocked_los,0,
MAP_CLIENT_X * MAP_CLIENT_Y);
}
/*
* expand_sight goes through the array of what the given player is
* able to see, and expands the visible area a bit, so the player will,
* to a certain degree, be able to see into corners.
* This is somewhat suboptimal, would be better to improve the formula.
*/
static void expand_sight(object *op)
{
int i,x,y, dx, dy;
for(x=1;x<op->contr->socket.mapx-1;x++) /* loop over inner squares */
for(y=1;y<op->contr->socket.mapy-1;y++) {
if (!op->contr->blocked_los[x][y] &&
!(get_map_flags(op->map,NULL,
op->x-op->contr->socket.mapx/2+x,
op->y-op->contr->socket.mapy/2+y,
NULL, NULL) & (P_BLOCKSVIEW | P_OUT_OF_MAP))) {
for(i=1;i<=8;i+=1) { /* mark all directions */
dx = x + freearr_x[i];
dy = y + freearr_y[i];
if(op->contr->blocked_los[dx][dy] > 0) /* for any square blocked */
op->contr->blocked_los[dx][dy]= -1;
}
}
}
if(MAP_DARKNESS(op->map)>0) /* player is on a dark map */
expand_lighted_sight(op);
/* clear mark squares */
for (x = 0; x < op->contr->socket.mapx; x++)
for (y = 0; y < op->contr->socket.mapy; y++)
if (op->contr->blocked_los[x][y] < 0)
op->contr->blocked_los[x][y] = 0;
}
/* returns true if op carries one or more lights
* This is a trivial function now days, but it used to
* be a bit longer. Probably better for callers to just
* check the op->glow_radius instead of calling this.
*/
int has_carried_lights(const object *op) {
/* op may glow! */
if(op->glow_radius>0) return 1;
return 0;
}
static void expand_lighted_sight(object *op)
{
int x,y,darklevel,ax,ay, basex, basey, mflags, light, x1, y1;
mapstruct *m=op->map;
sint16 nx, ny;
darklevel = MAP_DARKNESS(m);
/* If the player can see in the dark, lower the darklevel for him */
if(QUERY_FLAG(op,FLAG_SEE_IN_DARK)) darklevel -= 2;
/* add light, by finding all (non-null) nearby light sources, then
* mark those squares specially. If the darklevel<1, there is no
* reason to do this, so we skip this function
*/
if(darklevel<1) return;
/* Do a sanity check. If not valid, some code below may do odd
* things.
*/
if (darklevel > MAX_DARKNESS) {
LOG(llevError,"Map darkness for %s on %s is too high (%d)\n",
op->name, op->map->path, darklevel);
darklevel = MAX_DARKNESS;
}
/* First, limit player furthest (unlighted) vision */
for (x = 0; x < op->contr->socket.mapx; x++)
for (y = 0; y < op->contr->socket.mapy; y++)
if(op->contr->blocked_los[x][y]!=100)
op->contr->blocked_los[x][y]= MAX_LIGHT_RADII;
/* the spaces[] darkness value contains the information we need.
* Only process the area of interest.
* the basex, basey values represent the position in the op->contr->blocked_los
* array. Its easier to just increment them here (and start with the right
* value) than to recalculate them down below.
*/
for (x=(op->x - op->contr->socket.mapx/2 - MAX_LIGHT_RADII), basex=-MAX_LIGHT_RADII;
x <= (op->x + op->contr->socket.mapx/2 + MAX_LIGHT_RADII); x++, basex++) {
for (y=(op->y - op->contr->socket.mapy/2 - MAX_LIGHT_RADII), basey=-MAX_LIGHT_RADII;
y <= (op->y + op->contr->socket.mapy/2 + MAX_LIGHT_RADII); y++, basey++) {
m = op->map;
nx = x;
ny = y;
mflags = get_map_flags(m, &m, nx, ny, &nx, &ny);
if (mflags & P_OUT_OF_MAP) continue;
/* This space is providing light, so we need to brighten up the
* spaces around here.
*/
light = GET_MAP_LIGHT(m, nx, ny);
if (light != 0) {
#if 0
LOG(llevDebug, "expand_lighted_sight: Found light at x=%d, y=%d, basex=%d, basey=%d\n",
x, y, basex, basey);
#endif
for (ax=basex - light; ax<=basex+light; ax++) {
if (ax<0 || ax>=op->contr->socket.mapx) continue;
for (ay=basey - light; ay<=basey+light; ay++) {
if (ay<0 || ay>=op->contr->socket.mapy) continue;
/* If the space is fully blocked, do nothing. Otherwise, we
* brighten the space. The further the light is away from the
* source (basex-x), the less effect it has. Though light used
* to dim in a square manner, it now dims in a circular manner
* using the the pythagorean theorem. glow_radius still
* represents the radius
*/
if(op->contr->blocked_los[ax][ay]!=100) {
x1 = abs(basex-ax)*abs(basex-ax);
y1 = abs(basey-ay)*abs(basey-ay);
if (light > 0) op->contr->blocked_los[ax][ay]-= MAX((light - isqrt(x1 + y1)), 0);
if (light < 0) op->contr->blocked_los[ax][ay]-= MIN((light + isqrt(x1 + y1)), 0);
}
} /* for ay */
} /* for ax */
} /* if this space is providing light */
} /* for y */
} /* for x */
/* Outdoor should never really be completely pitch black dark like
* a dungeon, so let the player at least see a little around themselves
*/
if (op->map->outdoor && darklevel > (MAX_DARKNESS - 3)) {
if (op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] > (MAX_DARKNESS-3))
op->contr->blocked_los[op->contr->socket.mapx/2][op->contr->socket.mapy/2] = MAX_DARKNESS - 3;
for (x=-1; x<=1; x++)
for (y=-1; y<=1; y++) {
if (op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] > (MAX_DARKNESS-2))
op->contr->blocked_los[x + op->contr->socket.mapx/2][y + op->contr->socket.mapy/2] = MAX_DARKNESS - 2;
}
}
/* grant some vision to the player, based on the darklevel */
for(x=darklevel-MAX_DARKNESS; x<MAX_DARKNESS + 1 -darklevel; x++)
for(y=darklevel-MAX_DARKNESS; y<MAX_DARKNESS + 1 -darklevel; y++)
if(!(op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]==100))
op->contr->blocked_los[x+op->contr->socket.mapx/2][y+op->contr->socket.mapy/2]-=
MAX(0,6 -darklevel - MAX(abs(x),abs(y)));
}
/* blinded_sight() - sets all veiwable squares to blocked except
* for the one the central one that the player occupies. A little
* odd that you can see yourself (and what your standing on), but
* really need for any reasonable game play.
*/
static void blinded_sight(object *op) {
int x,y;
for (x = 0; x < op->contr->socket.mapx; x++)
for (y = 0; y < op->contr->socket.mapy; y++)
op->contr->blocked_los[x][y] = 100;
op->contr->blocked_los[ op->contr->socket.mapx/2][ op->contr->socket.mapy/2] = 0;
}
/*
* update_los() recalculates the array which specifies what is
* visible for the given player-object.
*/
void update_los(object *op) {
int dx = op->contr->socket.mapx/2, dy = op->contr->socket.mapy/2, x, y;
if(QUERY_FLAG(op,FLAG_REMOVED))
return;
clear_los(op);
if(QUERY_FLAG(op,FLAG_WIZ) /* ||XRAYS(op) */)
return;
/* For larger maps, this is more efficient than the old way which
* used the chaining of the block array. Since many space views could
* be blocked by different spaces in front, this mean that a lot of spaces
* could be examined multile times, as each path would be looked at.
*/
for (x=(MAP_CLIENT_X - op->contr->socket.mapx)/2 + 1; x<(MAP_CLIENT_X + op->contr->socket.mapx)/2 - 1; x++)
for (y=(MAP_CLIENT_Y - op->contr->socket.mapy)/2 + 1; y<(MAP_CLIENT_Y + op->contr->socket.mapy)/2 - 1; y++)
check_wall(op, x, y);
/* do the los of the player. 3 (potential) cases */
if(QUERY_FLAG(op,FLAG_BLIND)) /* player is blind */
blinded_sight(op);
else
expand_sight(op);
if (QUERY_FLAG(op,FLAG_XRAYS)) {
int x, y;
for (x = -2; x <= 2; x++)
for (y = -2; y <= 2; y++)
op->contr->blocked_los[dx + x][dy + y] = 0;
}
}
/* update all_map_los is like update_all_los below,
* but updates everyone on the map, no matter where they
* are. This generally should not be used, as a per
* specific map change doesn't make much sense when tiling
* is considered (lowering darkness would certainly be a
* strange effect if done on a tile map, as it makes
* the distinction between maps much more obvious to the
* players, which is should not be.
* Currently, this function is called from the
* change_map_light function
*/
void update_all_map_los(mapstruct *map) {
player *pl;
for(pl=first_player;pl!=NULL;pl=pl->next) {
if(pl->ob->map==map)
pl->do_los=1;
}
}
/*
* This function makes sure that update_los() will be called for all
* players on the given map within the next frame.
* It is triggered by removal or inserting of objects which blocks
* the sight in the map.
* Modified by MSW 2001-07-12 to take a coordinate of the changed
* position, and to also take map tiling into account. This change
* means that just being on the same map is not sufficient - the
* space that changes must be withing your viewable area.
*
* map is the map that changed, x and y are the coordinates.
*/
void update_all_los(const mapstruct *map, int x, int y) {
player *pl;
for(pl=first_player;pl!=NULL;pl=pl->next) {
/* Player should not have a null map, but do this
* check as a safety
*/
if (!pl->ob->map) continue;
/* Same map is simple case - see if pl is close enough.
* Note in all cases, we did the check for same map first,
* and then see if the player is close enough and update
* los if that is the case. If the player is on the
* corresponding map, but not close enough, then the
* player can't be on another map that may be closer,
* so by setting it up this way, we trim processing
* some.
*/
if(pl->ob->map==map) {
if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) &&
(abs(pl->ob->y - y) <= pl->socket.mapy/2))
pl->do_los=1;
}
/* Now we check to see if player is on adjacent
* maps to the one that changed and also within
* view. The tile_maps[] could be null, but in that
* case it should never match the pl->ob->map, so
* we want ever try to dereference any of the data in it.
*/
/* The logic for 0 and 3 is to see how far the player is
* from the edge of the map (height/width) - pl->ob->(x,y)
* and to add current position on this map - that gives a
* distance.
* For 1 and 2, we check to see how far the given
* coordinate (x,y) is from the corresponding edge,
* and then add the players location, which gives
* a distance.
*/
else if (pl->ob->map == map->tile_map[0]) {
if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) &&
(abs(y + MAP_HEIGHT(map->tile_map[0]) - pl->ob->y) <= pl->socket.mapy/2))
pl->do_los=1;
}
else if (pl->ob->map == map->tile_map[2]) {
if ((abs(pl->ob->x - x) <= pl->socket.mapx/2) &&
(abs(pl->ob->y + MAP_HEIGHT(map) - y) <= pl->socket.mapy/2))
pl->do_los=1;
}
else if (pl->ob->map == map->tile_map[1]) {
if ((abs(pl->ob->x + MAP_WIDTH(map) - x) <= pl->socket.mapx/2) &&
(abs(pl->ob->y - y) <= pl->socket.mapy/2))
pl->do_los=1;
}
else if (pl->ob->map == map->tile_map[3]) {
if ((abs(x + MAP_WIDTH(map->tile_map[3]) - pl->ob->x) <= pl->socket.mapx/2) &&
(abs(pl->ob->y - y) <= pl->socket.mapy/2))
pl->do_los=1;
}
}
}
/*
* Debug-routine which dumps the array which specifies the visible
* area of a player. Triggered by the z key in DM mode.
*/
void print_los(object *op) {
int x,y;
char buf[MAP_CLIENT_X * 2 + 20], buf2[10];
snprintf(buf, sizeof(buf), " ");
for(x=0;x<op->contr->socket.mapx;x++) {
snprintf(buf2, sizeof(buf2), "%2d",x);
strncat(buf, buf2, sizeof(buf) - strlen(buf) - 1);
}
new_draw_info(NDI_UNIQUE, 0, op, buf);
for(y=0;y<op->contr->socket.mapy;y++) {
snprintf(buf, sizeof(buf), "%2d:",y);
for(x=0;x<op->contr->socket.mapx;x++) {
snprintf(buf2, sizeof(buf2), " %1d",op->contr->blocked_los[x][y] == 100 ? 1 : 0);
strncat(buf,buf2, sizeof(buf) - strlen(buf) - 1);
}
new_draw_info(NDI_UNIQUE, 0, op, buf);
}
}
/*
* make_sure_seen: The object is supposed to be visible through walls, thus
* check if any players are nearby, and edit their LOS array.
*/
void make_sure_seen(const object *op) {
player *pl;
for (pl = first_player; pl; pl = pl->next)
if (pl->ob->map == op->map &&
pl->ob->y - pl->socket.mapy/2 <= op->y &&
pl->ob->y + pl->socket.mapy/2 >= op->y &&
pl->ob->x - pl->socket.mapx/2 <= op->x &&
pl->ob->x + pl->socket.mapx/2 >= op->x)
pl->blocked_los[pl->socket.mapx/2 + op->x - pl->ob->x]
[pl->socket.mapy/2 + op->y - pl->ob->y] = 0;
}
/*
* make_sure_not_seen: The object which is supposed to be visible through
* walls has just been removed from the map, so update the los of any
* players within its range
*/
void make_sure_not_seen(const object *op) {
player *pl;
for (pl = first_player; pl; pl = pl->next)
if (pl->ob->map == op->map &&
pl->ob->y - pl->socket.mapy/2 <= op->y &&
pl->ob->y + pl->socket.mapy/2 >= op->y &&
pl->ob->x - pl->socket.mapx/2 <= op->x &&
pl->ob->x + pl->socket.mapx/2 >= op->x)
pl->do_los = 1;
}
|