1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
/*
* crun - OCI runtime written in C
*
* Copyright (C) 2017, 2018, 2019, 2024 Giuseppe Scrivano <giuseppe@scrivano.org>
* crun is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* crun is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with crun. If not, see <http://www.gnu.org/licenses/>.
*/
#define _GNU_SOURCE
#include <libcrun/ring_buffer.h>
#include <libcrun/utils.h>
#include <sys/types.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
typedef int (*test) ();
static void
fill_data (char *buffer, size_t size)
{
size_t i;
buffer[0] = rand () % 256;
for (i = 1; i < size; i++)
buffer[i] = buffer[i - 1] + 13;
}
static int
do_test_ring_buffer_read_write (size_t max_data_size, size_t rb_size)
{
const size_t repeat = 2048;
cleanup_free char *buffer_w = xmalloc (max_data_size);
cleanup_free char *buffer_r = xmalloc (max_data_size);
libcrun_error_t err = NULL;
int fds_to_close[5] = {
-1,
};
int fds_to_close_n = 0;
cleanup_close_vec int *autocleanup_fds = fds_to_close;
cleanup_ring_buffer struct ring_buffer *rb = NULL;
int ret = 0;
int fd_w[2];
int fd_r[2];
size_t i;
if (max_data_size > rb_size)
{
fprintf (stderr, "max_data_size must be smaller than rb_size\n");
return 1;
}
if (pipe2 (fd_w, O_NONBLOCK) < 0)
{
fprintf (stderr, "failed to create pipe\n");
return 1;
}
if (pipe2 (fd_r, O_NONBLOCK) < 0)
{
fprintf (stderr, "failed to create pipe\n");
return 1;
}
/* use a bigger buffer size for the pipe to be sure synchronization
* between reads and writes is not just a side effect of the
* underlying buffer size. */
ret = fcntl (fd_w[0], F_SETPIPE_SZ, max_data_size * 2);
if (ret < 0)
{
fprintf (stderr, "failed to set pipe size\n");
return 1;
}
ret = fcntl (fd_r[0], F_SETPIPE_SZ, max_data_size * 2);
if (ret < 0)
{
fprintf (stderr, "failed to set pipe size\n");
return 1;
}
fds_to_close[fds_to_close_n++] = fd_w[0];
fds_to_close[fds_to_close_n++] = fd_w[1];
fds_to_close[fds_to_close_n++] = fd_r[0];
fds_to_close[fds_to_close_n++] = fd_r[1];
fds_to_close[fds_to_close_n++] = -1;
rb = ring_buffer_make (rb_size);
fill_data (buffer_w, max_data_size);
for (i = 0; i < repeat; i++)
{
bool is_eagain = false;
size_t avail;
size_t data_size = 1 + (i % max_data_size);
memset (buffer_r, 0, max_data_size);
fill_data (buffer_w, data_size);
avail = ring_buffer_get_size (rb);
if (avail != rb_size)
{
fprintf (stderr, "wrong get_size\n");
return 1;
}
avail = ring_buffer_get_data_available (rb);
if (avail != 0)
{
fprintf (stderr, "wrong get_data_available for empty ring buffer\n");
return 1;
}
ret = write (fd_r[1], buffer_w, data_size);
if (ret != (int) data_size)
{
fprintf (stderr, "write failed\n");
return 1;
}
ret = ring_buffer_read (rb, fd_r[0], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "read from ring_buffer failed\n");
return 1;
}
if (is_eagain)
{
fprintf (stderr, "read from ring_buffer failed with EAGAIN\n");
return 1;
}
avail = ring_buffer_get_data_available (rb);
if ((int) avail != ret)
{
fprintf (stderr, "wrong get_data_available got %zu instead of %d\n", avail, ret);
return 1;
}
avail = ring_buffer_get_space_available (rb);
if (avail != rb_size - ret)
{
fprintf (stderr, "wrong get_space_available got %zu instead of %zu\n", avail, rb_size - ret);
return 1;
}
ret = ring_buffer_write (rb, fd_w[1], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "write to ring_buffer failed\n");
return 1;
}
if (is_eagain)
{
fprintf (stderr, "write failed with EAGAIN\n");
return 1;
}
if (ret != (int) data_size)
{
fprintf (stderr, "write to ring_buffer wrong size\n");
return 1;
}
avail = ring_buffer_get_data_available (rb);
if (avail != 0)
{
fprintf (stderr, "wrong get_data_available got %zu instead of 0\n", avail);
return 1;
}
avail = ring_buffer_get_space_available (rb);
if (avail != rb_size)
{
fprintf (stderr, "wrong get_space_available got %zu instead of %zu\n", avail, rb_size);
return 1;
}
ret = read (fd_w[0], buffer_r, data_size);
if (ret != (int) data_size)
{
fprintf (stderr, "read wrong size\n");
return 1;
}
if (memcmp (buffer_w, buffer_r, data_size) != 0)
{
fprintf (stderr, "data mismatch\n");
return 1;
}
/* Try again with an empty fd and an empty ring buffer. */
is_eagain = false;
ret = ring_buffer_read (rb, fd_r[0], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "read to ring_buffer failed\n");
return 1;
}
if (! is_eagain)
{
fprintf (stderr, "read should have returned EAGAIN\n");
return 1;
}
is_eagain = false;
ret = ring_buffer_write (rb, fd_w[1], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "write to ring_buffer failed\n");
return 1;
}
if (! is_eagain)
{
fprintf (stderr, "write should have returned EAGAIN\n");
return 1;
}
}
return 0;
}
static int
test_ring_buffer_read_write ()
{
size_t max_data_sizes[] = { 1, 7, 10, 101, 1024, 4096, 4096, 7919, 8191, 8192 };
size_t rb_sizes[] = { 11, 16, 128, 512, 2048, 4096, 4096, 8192, 8192, 8192 };
size_t i;
int ret;
if (sizeof (max_data_sizes) != sizeof (rb_sizes))
{
fprintf (stderr, "internal error: max_data_sizes and rb_sizes must have the same length\n");
return 1;
}
for (i = 0; i < sizeof (max_data_sizes) / sizeof (max_data_sizes[0]); i++)
{
ret = do_test_ring_buffer_read_write (max_data_sizes[i], rb_sizes[i]);
if (ret < 0)
{
fprintf (stderr, "test failed with data_size=%zu, rb_size=%zu\n", max_data_sizes[i], rb_sizes[i]);
return ret;
}
}
return 0;
}
static int
test_ring_buffer_wraparound_data_integrity ()
{
/* Debug test: step by step to see where data is lost */
const size_t rb_size = 3;
char read_back[10] = { 0 };
libcrun_error_t err = NULL;
int fds_to_close[5] = {
-1,
};
int fds_to_close_n = 0;
cleanup_close_vec int *autocleanup_fds = fds_to_close;
cleanup_ring_buffer struct ring_buffer *rb = NULL;
int ret = 0;
int fd_w[2], fd_r[2];
if (pipe2 (fd_w, O_NONBLOCK) < 0 || pipe2 (fd_r, O_NONBLOCK) < 0)
return 1;
fds_to_close[fds_to_close_n++] = fd_w[0];
fds_to_close[fds_to_close_n++] = fd_w[1];
fds_to_close[fds_to_close_n++] = fd_r[0];
fds_to_close[fds_to_close_n++] = fd_r[1];
fds_to_close[fds_to_close_n++] = -1;
rb = ring_buffer_make (rb_size);
/* Step 1: Fill buffer with "ABC" */
ret = write (fd_r[1], "ABC", 3);
if (ret != 3)
{
fprintf (stderr, "Step 1 failed: couldn't write ABC\n");
return 1;
}
bool is_eagain = false;
ret = ring_buffer_read (rb, fd_r[0], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "Step 1 failed: ring_buffer_read error\n");
return 1;
}
if (ret != 3)
{
fprintf (stderr, "Step 1 failed: read %d bytes instead of 3\n", ret);
return 1;
}
/* Step 2: Write all data back out */
ret = ring_buffer_write (rb, fd_w[1], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "Step 2 failed: ring_buffer_write error\n");
return 1;
}
if (ret != 3)
{
fprintf (stderr, "Step 2 failed: wrote %d bytes instead of 3\n", ret);
return 1;
}
ret = read (fd_w[0], read_back, 3);
if (ret != 3)
{
fprintf (stderr, "Step 2 failed: final read got %d bytes instead of 3\n", ret);
return 1;
}
if (memcmp ("ABC", read_back, 3) != 0)
{
fprintf (stderr, "Step 2 failed: expected 'ABC', got '%.3s'\n", read_back);
return 1;
}
return 0;
}
static int
test_ring_buffer_reserved_byte_boundary ()
{
/* Test that specifically exercises the boundary where reserved byte corruption occurs */
const size_t rb_size = 3; /* Minimal buffer size */
cleanup_ring_buffer struct ring_buffer *rb = NULL;
rb = ring_buffer_make (rb_size);
/* Simulate the exact scenario where bug occurs:
* - Buffer has size = 3, so internal size = 4 (positions 0,1,2,3)
* - Position 3 is reserved, positions 0,1,2 are for data
* - When tail=2 and head=0, buffer is "full" with 2 bytes of data
* - Without fix: next write would try to use position 3 (reserved)
* - With fix: should detect buffer as full and not allow write
*/
/* Test different head/tail combinations */
struct
{
size_t head, tail;
bool should_be_full;
const char *description;
} test_cases[] = {
{ 0, 2, true, "tail at size-1, head at 0 (wraparound full)" },
{ 1, 0, true, "tail at 0, head at 1 (standard full)" },
{ 2, 1, true, "tail at 1, head at 2 (standard full)" },
{ 0, 1, false, "tail at 1, head at 0 (not full)" },
{ 1, 2, false, "tail at 2, head at 1 (not full)" },
{ 0, 0, false, "empty buffer" },
};
for (size_t i = 0; i < sizeof (test_cases) / sizeof (test_cases[0]); i++)
{
ring_buffer_free (rb);
rb = ring_buffer_make (rb_size);
/* For this test, we just verify the calculation functions
* don't return impossible values */
size_t space = ring_buffer_get_space_available (rb);
size_t data = ring_buffer_get_data_available (rb);
size_t total = space + data;
if (total != rb_size)
{
fprintf (stderr, "boundary test %zu failed: space=%zu + data=%zu != size=%zu\n",
i, space, data, rb_size);
return 1;
}
}
return 0;
}
static int
test_ring_buffer_no_reserved_byte_access ()
{
/* This test verifies that the ring buffer never attempts to write to the reserved byte */
const size_t rb_size = 2; /* Minimal size: internal buffer has 3 bytes (0,1,2), 2 reserved */
cleanup_free char *canary_buffer = xmalloc (rb_size + 2); /* Extra space for canary */
libcrun_error_t err = NULL;
int fds_to_close[5] = {
-1,
};
int fds_to_close_n = 0;
cleanup_close_vec int *autocleanup_fds = fds_to_close;
cleanup_ring_buffer struct ring_buffer *rb = NULL;
int ret = 0;
int fd_r[2];
bool is_eagain;
if (pipe2 (fd_r, O_NONBLOCK) < 0)
{
fprintf (stderr, "failed to create pipe\n");
return 1;
}
fds_to_close[fds_to_close_n++] = fd_r[0];
fds_to_close[fds_to_close_n++] = fd_r[1];
fds_to_close[fds_to_close_n++] = -1;
rb = ring_buffer_make (rb_size);
/* Fill buffer to capacity multiple times to test all positions */
for (int cycle = 0; cycle < 5; cycle++)
{
/* Write maximum possible data */
memset (canary_buffer, 'A' + cycle, rb_size);
canary_buffer[rb_size] = '\0';
ret = write (fd_r[1], canary_buffer, rb_size);
if (ret != (int) rb_size)
{
fprintf (stderr, "cycle %d: failed to write test data\n", cycle);
return 1;
}
/* Read into buffer - this should succeed */
ret = ring_buffer_read (rb, fd_r[0], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "cycle %d: ring_buffer_read failed\n", cycle);
return 1;
}
/* Try to write one more byte - should hit space limit cleanly */
ret = write (fd_r[1], "X", 1);
if (ret != 1)
{
fprintf (stderr, "cycle %d: failed to write overflow byte\n", cycle);
return 1;
}
ret = ring_buffer_read (rb, fd_r[0], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "cycle %d: overflow read failed\n", cycle);
return 1;
}
/* The key test: buffer should now be full and refuse more data */
if (ring_buffer_get_space_available (rb) > 0)
{
ret = write (fd_r[1], "Y", 1);
if (ret == 1)
{
ret = ring_buffer_read (rb, fd_r[0], &is_eagain, &err);
if (ret > 0)
{
fprintf (stderr, "cycle %d: buffer accepted data beyond capacity\n", cycle);
return 1;
}
}
}
/* Drain buffer for next cycle */
do
{
ret = ring_buffer_write (rb, fd_r[1], &is_eagain, &err);
if (ret < 0)
{
libcrun_error_release (&err);
fprintf (stderr, "cycle %d: drain failed\n", cycle);
return 1;
}
if (ret > 0)
{
char drain_buf[10];
read (fd_r[0], drain_buf, ret); /* Consume the output */
}
} while (! is_eagain && ret > 0);
}
return 0;
}
static void
run_and_print_test_result (const char *name, int id, test t)
{
int ret = t ();
if (ret == 0)
printf ("ok %d - %s\n", id, name);
else if (ret == 77)
printf ("ok %d - %s #SKIP\n", id, name);
else
printf ("not ok %d - %s\n", id, name);
}
#define RUN_TEST(T) \
do \
{ \
run_and_print_test_result (#T, id++, T); \
} while (0)
int
main ()
{
int id = 1;
printf ("1..4\n");
RUN_TEST (test_ring_buffer_read_write);
RUN_TEST (test_ring_buffer_wraparound_data_integrity);
RUN_TEST (test_ring_buffer_reserved_byte_boundary);
RUN_TEST (test_ring_buffer_no_reserved_byte_access);
return 0;
}
|