1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
/*
* twofish2.cc
*
* Copyright (C) 2000-2003 farm9.com, Inc. All Rights Reserved.
*
* --- jsilva@farm9.com, 2 December 2003, relicensed under GPL.
*
* --- jojo@farm9.com, August 2000, converted from Java to C++, added CBC mode and
* ciphertext stealing technique, added AsciiTwofish class for easy encryption
* decryption of text strings
*
* ### HEADER FROM ORIGINAL JAVA VERSION
* ###
* ### $Id: Twofish.java,v 1.4 2000/02/12 03:14:31 gelderen Exp $
* ###
* ### Copyright (C) 1997-2000 The Cryptix Foundation Limited.
* ### All rights reserved.
* ###
* ### Use, modification, copying and distribution of this software is subject
* ### the terms and conditions of the Cryptix General Licence. You should have
* ### received a copy of the Cryptix General Licence along with this library;
* ### if not, you can download a copy from http://www.cryptix.org/ .
* ###
*
*/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
***************************************************************************/
#include <string.h>
#include <unistd.h>
typedef unsigned char BYTE;
typedef unsigned long DWORD; /* 32-bit unsigned quantity */
/** Fixed 8x8 permutation S-boxes */
static unsigned char P[2][256] =
{
{ // p0
0xA9, 0x67, 0xB3, 0xE8,
0x04, 0xFD, 0xA3, 0x76,
0x9A, 0x92, 0x80, 0x78,
0xE4, 0xDD, 0xD1, 0x38,
0x0D, 0xC6, 0x35, 0x98,
0x18, 0xF7, 0xEC, 0x6C,
0x43, 0x75, 0x37, 0x26,
0xFA, 0x13, 0x94, 0x48,
0xF2, 0xD0, 0x8B, 0x30,
0x84, 0x54, 0xDF, 0x23,
0x19, 0x5B, 0x3D, 0x59,
0xF3, 0xAE, 0xA2, 0x82,
0x63, 0x01, 0x83, 0x2E,
0xD9, 0x51, 0x9B, 0x7C,
0xA6, 0xEB, 0xA5, 0xBE,
0x16, 0x0C, 0xE3, 0x61,
0xC0, 0x8C, 0x3A, 0xF5,
0x73, 0x2C, 0x25, 0x0B,
0xBB, 0x4E, 0x89, 0x6B,
0x53, 0x6A, 0xB4, 0xF1,
0xE1, 0xE6, 0xBD, 0x45,
0xE2, 0xF4, 0xB6, 0x66,
0xCC, 0x95, 0x03, 0x56,
0xD4, 0x1C, 0x1E, 0xD7,
0xFB, 0xC3, 0x8E, 0xB5,
0xE9, 0xCF, 0xBF, 0xBA,
0xEA, 0x77, 0x39, 0xAF,
0x33, 0xC9, 0x62, 0x71,
0x81, 0x79, 0x09, 0xAD,
0x24, 0xCD, 0xF9, 0xD8,
0xE5, 0xC5, 0xB9, 0x4D,
0x44, 0x08, 0x86, 0xE7,
0xA1, 0x1D, 0xAA, 0xED,
0x06, 0x70, 0xB2, 0xD2,
0x41, 0x7B, 0xA0, 0x11,
0x31, 0xC2, 0x27, 0x90,
0x20, 0xF6, 0x60, 0xFF,
0x96, 0x5C, 0xB1, 0xAB,
0x9E, 0x9C, 0x52, 0x1B,
0x5F, 0x93, 0x0A, 0xEF,
0x91, 0x85, 0x49, 0xEE,
0x2D, 0x4F, 0x8F, 0x3B,
0x47, 0x87, 0x6D, 0x46,
0xD6, 0x3E, 0x69, 0x64,
0x2A, 0xCE, 0xCB, 0x2F,
0xFC, 0x97, 0x05, 0x7A,
0xAC, 0x7F, 0xD5, 0x1A,
0x4B, 0x0E, 0xA7, 0x5A,
0x28, 0x14, 0x3F, 0x29,
0x88, 0x3C, 0x4C, 0x02,
0xB8, 0xDA, 0xB0, 0x17,
0x55, 0x1F, 0x8A, 0x7D,
0x57, 0xC7, 0x8D, 0x74,
0xB7, 0xC4, 0x9F, 0x72,
0x7E, 0x15, 0x22, 0x12,
0x58, 0x07, 0x99, 0x34,
0x6E, 0x50, 0xDE, 0x68,
0x65, 0xBC, 0xDB, 0xF8,
0xC8, 0xA8, 0x2B, 0x40,
0xDC, 0xFE, 0x32, 0xA4,
0xCA, 0x10, 0x21, 0xF0,
0xD3, 0x5D, 0x0F, 0x00,
0x6F, 0x9D, 0x36, 0x42,
0x4A, 0x5E, 0xC1, 0xE0
},
{ // p1
0x75, 0xF3, 0xC6, 0xF4,
0xDB, 0x7B, 0xFB, 0xC8,
0x4A, 0xD3, 0xE6, 0x6B,
0x45, 0x7D, 0xE8, 0x4B,
0xD6, 0x32, 0xD8, 0xFD,
0x37, 0x71, 0xF1, 0xE1,
0x30, 0x0F, 0xF8, 0x1B,
0x87, 0xFA, 0x06, 0x3F,
0x5E, 0xBA, 0xAE, 0x5B,
0x8A, 0x00, 0xBC, 0x9D,
0x6D, 0xC1, 0xB1, 0x0E,
0x80, 0x5D, 0xD2, 0xD5,
0xA0, 0x84, 0x07, 0x14,
0xB5, 0x90, 0x2C, 0xA3,
0xB2, 0x73, 0x4C, 0x54,
0x92, 0x74, 0x36, 0x51,
0x38, 0xB0, 0xBD, 0x5A,
0xFC, 0x60, 0x62, 0x96,
0x6C, 0x42, 0xF7, 0x10,
0x7C, 0x28, 0x27, 0x8C,
0x13, 0x95, 0x9C, 0xC7,
0x24, 0x46, 0x3B, 0x70,
0xCA, 0xE3, 0x85, 0xCB,
0x11, 0xD0, 0x93, 0xB8,
0xA6, 0x83, 0x20, 0xFF,
0x9F, 0x77, 0xC3, 0xCC,
0x03, 0x6F, 0x08, 0xBF,
0x40, 0xE7, 0x2B, 0xE2,
0x79, 0x0C, 0xAA, 0x82,
0x41, 0x3A, 0xEA, 0xB9,
0xE4, 0x9A, 0xA4, 0x97,
0x7E, 0xDA, 0x7A, 0x17,
0x66, 0x94, 0xA1, 0x1D,
0x3D, 0xF0, 0xDE, 0xB3,
0x0B, 0x72, 0xA7, 0x1C,
0xEF, 0xD1, 0x53, 0x3E,
0x8F, 0x33, 0x26, 0x5F,
0xEC, 0x76, 0x2A, 0x49,
0x81, 0x88, 0xEE, 0x21,
0xC4, 0x1A, 0xEB, 0xD9,
0xC5, 0x39, 0x99, 0xCD,
0xAD, 0x31, 0x8B, 0x01,
0x18, 0x23, 0xDD, 0x1F,
0x4E, 0x2D, 0xF9, 0x48,
0x4F, 0xF2, 0x65, 0x8E,
0x78, 0x5C, 0x58, 0x19,
0x8D, 0xE5, 0x98, 0x57,
0x67, 0x7F, 0x05, 0x64,
0xAF, 0x63, 0xB6, 0xFE,
0xF5, 0xB7, 0x3C, 0xA5,
0xCE, 0xE9, 0x68, 0x44,
0xE0, 0x4D, 0x43, 0x69,
0x29, 0x2E, 0xAC, 0x15,
0x59, 0xA8, 0x0A, 0x9E,
0x6E, 0x47, 0xDF, 0x34,
0x35, 0x6A, 0xCF, 0xDC,
0x22, 0xC9, 0xC0, 0x9B,
0x89, 0xD4, 0xED, 0xAB,
0x12, 0xA2, 0x0D, 0x52,
0xBB, 0x02, 0x2F, 0xA9,
0xD7, 0x61, 0x1E, 0xB4,
0x50, 0x04, 0xF6, 0xC2,
0x16, 0x25, 0x86, 0x56,
0x55, 0x09, 0xBE, 0x91
}
};
/** MDS matrix */
static int MDS[4][256]; // blank final
#include "twofish2.h"
////////////////////////////////////////////////////////////////////
////////////////////// DEFINES /////////////////////////////////////
////////////////////////////////////////////////////////////////////
#define LFSR1(x) ( ((x) >> 1) ^ (((x) & 0x01) ? MDS_GF_FDBK/2 : 0))
#define LFSR2(x) ( ((x) >> 2) ^ (((x) & 0x02) ? MDS_GF_FDBK/2 : 0) ^ (((x) & 0x01) ? MDS_GF_FDBK/4 : 0))
#define Mx_1(x) ((DWORD) (x)) /* force result to dword so << will work */
#define Mx_X(x) ((DWORD) ((x) ^ LFSR2(x))) /* 5B */
#define Mx_Y(x) ((DWORD) ((x) ^ LFSR1(x) ^ LFSR2(x))) /* EF */
#define RS_rem(x) { BYTE b = (BYTE) (x >> 24); DWORD g2 = ((b << 1) ^ ((b & 0x80) ? RS_GF_FDBK : 0 )) & 0xFF; DWORD g3 = ((b >> 1) & 0x7F) ^ ((b & 1) ? RS_GF_FDBK >> 1 : 0 ) ^ g2 ; x = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b; }
//#define _b(x,N) (((BYTE *)&x)[((N) & 3) ^ ADDR_XOR]) /* pick bytes out of a dword */
#define _b(x,N) (((BYTE *)&x)[((N) & 3)]) /* pick bytes out of a dword */
#define b0(x) _b(x,0) /* extract LSB of DWORD */
#define b1(x) _b(x,1)
#define b2(x) _b(x,2)
#define b3(x) _b(x,3) /* extract MSB of DWORD */
////////////////////////////////////////////////////////////////////
////////////////////// METHODS /////////////////////////////////////
////////////////////////////////////////////////////////////////////
void TwoFish::precomputeMDSmatrix() {
// precompute the MDS matrix
int m1[2];
int mX[2];
int mY[2];
int i, j;
for (i = 0; i < 256; i++) {
j = P[0][i] & 0xFF; // compute all the matrix elements
m1[0] = j;
mX[0] = Mx_X( j ) & 0xFF;
mY[0] = Mx_Y( j ) & 0xFF;
j = P[1][i] & 0xFF;
m1[1] = j;
mX[1] = Mx_X( j ) & 0xFF;
mY[1] = Mx_Y( j ) & 0xFF;
MDS[0][i] = m1[P_00] << 0 | // fill matrix w/ above elements
mX[P_00] << 8 |
mY[P_00] << 16 |
mY[P_00] << 24;
MDS[1][i] = mY[P_10] << 0 |
mY[P_10] << 8 |
mX[P_10] << 16 |
m1[P_10] << 24;
MDS[2][i] = mX[P_20] << 0 |
mY[P_20] << 8 |
m1[P_20] << 16 |
mY[P_20] << 24;
MDS[3][i] = mX[P_30] << 0 |
m1[P_30] << 8 |
mY[P_30] << 16 |
mX[P_30] << 24;
}
}
// Constructor
//...........................................................................
TwoFish::TwoFish(char* userkey, bool _decrypt, FILE* _fpout, unsigned char* _outputBuffer ) {
decrypt = _decrypt;
fpout = _fpout;
if ( fpout == NULL ) {
outputIsFile = false;
} else {
outputIsFile = true;
}
outputBuffer = _outputBuffer;
if ( outputBuffer == NULL ) {
outputIsBuffer = false;
} else {
outputIsBuffer = true;
}
precomputeMDSmatrix();
makeSubKeys(userkey);
qBlockDefined = false;
}
// Private methods
//...........................................................................
/**
* Expand a user-supplied key material into a session key.
*
* @param key The 64/128/192/256-bit user-key to use.
* @return This cipher's round keys.
* @exception InvalidKeyException If the key is invalid.
*/
void TwoFish::makeSubKeys( char* k ) {
int length = 32;
int k64Cnt = length / 8;
int k32e[4]; // even 32-bit entities
int k32o[4]; // odd 32-bit entities
int sBoxKey[4];
// split user key material into even and odd 32-bit entities and
// compute S-box keys using (12, 8) Reed-Solomon code over GF(256)
int i, j, offset = 0;
for (i = 0, j = k64Cnt-1; i < 4 && offset < length; i++, j--) {
k32e[i] = (k[offset] & 0xFF) |
(k[offset+1] & 0xFF) << 8 |
(k[offset+2] & 0xFF) << 16 |
(k[offset+3] & 0xFF) << 24;
offset += 4;
k32o[i] = (k[offset] & 0xFF) |
(k[offset+1] & 0xFF) << 8 |
(k[offset+2] & 0xFF) << 16 |
(k[offset+3] & 0xFF) << 24;
offset += 4;
sBoxKey[j] = RS_MDS_Encode( k32e[i], k32o[i] ); // reverse order
}
// compute the round decryption subkeys for PHT. these same subkeys
// will be used in encryption but will be applied in reverse order.
unsigned int A, B, q=0;
i=0;
while(i < TOTAL_SUBKEYS) {
A = F32( k64Cnt, q, k32e ); // A uses even key entities
q += SK_BUMP;
B = F32( k64Cnt, q, k32o ); // B uses odd key entities
q += SK_BUMP;
B = B << 8 | B >> 24;
A += B;
subKeys[i++] = A; // combine with a PHT
A += B;
subKeys[i++] = A << SK_ROTL | A >> (32-SK_ROTL);
}
// fully expand the table for speed
int k0 = sBoxKey[0];
int k1 = sBoxKey[1];
int k2 = sBoxKey[2];
int k3 = sBoxKey[3];
int b0, b1, b2, b3;
for (i = 0; i < 256; i++) {
b0 = b1 = b2 = b3 = i;
switch (k64Cnt & 3) {
case 1:
sBox[ 2*i ] = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)];
sBox[ 2*i+1] = MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)];
sBox[0x200+2*i ] = MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)];
sBox[0x200+2*i+1] = MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
break;
case 0: // same as 4
b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
case 3:
b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
case 2: // 128-bit keys
sBox[ 2*i ] = MDS[0][
(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)];
sBox[ 2*i+1] = MDS[1][
(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)];
sBox[0x200+2*i ] = MDS[2][
(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)];
sBox[0x200+2*i+1] = MDS[3][
(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
}
}
// swap input and output whitening keys when decrypting
if(decrypt) {
for(i=0; i<4; i++) {
int t = subKeys[i];
subKeys[i] = subKeys[i+4];
subKeys[i+4] = t;
}
}
}
static void bzero( char* ptr, int size ) {
for ( int i = 0; i < size; i++ ) {
*ptr++ = 0;
}
}
//
// write output to all active output areas
//
void TwoFish::flushOutput( char* b, int len ) {
if ( outputIsSocket ) {
int wret = write( sockfd, b, len );
}
for ( int i = 0; i < len; i++, b++ ) {
if ( outputIsFile ) {
fputc( *b, fpout );
}
if ( outputIsBuffer ) {
*outputBuffer = *b;
outputBuffer++;
}
}
}
/**
* Encrypt or decrypt exactly one block of plaintext in CBC mode.
* Use "ciphertext stealing" technique described on pg. 196
* of "Applied Cryptography" to encrypt the final partial
* (i.e. <16 byte) block if necessary.
*
* Note: the "ciphertext stealing" requires we read ahead and have
* special handling for the last two blocks. Because of this, the
* output from the TwoFish algorithm is handled internally here.
* It would be better to have a higher level handle this as well as
* CBC mode. Unfortunately, I've mixed the two together, which is
* pretty crappy... The Java version separates these out correctly.
*
* @param in The plaintext.
* @param out The ciphertext
* @param size how much to encrypt
* @return none
*/
void TwoFish::blockCrypt( char* in, char* out, int size ) {
// here is where we implement CBC mode and cipher block stealing
if ( size == 16 ) {
// if we are encrypting, CBC means we XOR the plain text block with the
// previous cipher text block before encrypting
if ( !decrypt && qBlockDefined ) {
char* scanner = in;
for ( int i = 0; i < 16; i++, scanner++ ) {
*scanner = *scanner ^ qBlockCrypt[i];
}
}
// TwoFish block level encryption or decryption
blockCrypt16( in, out );
// if we are decrypting, CBC means we XOR the result of the decryption
// with the previous ciper text block to get the resulting plain text
if ( decrypt && qBlockDefined ) {
char* scanner = out;
for ( int i = 0; i < 16; i++, scanner++ ) {
*scanner = *scanner ^ qBlockPlain[i];
}
}
// save the input and output blocks, since CBC needs these for XOR
// operations
qBlockPush( in, out );
} else {
// cipher block stealing, we are at Pn,
// but since Cn-1 must now be replaced with CnC'
// we pop it off, and recalculate Cn-1
//
char PnMinusOne[16];
char CnMinusOne[16];
if ( decrypt ) {
// We are on an odd block, and had to do cipher block stealing,
// so the PnMinusOne has to be derived differently.
qBlockPop( &CnMinusOne[0], &PnMinusOne[0] );
// First we decrypt it into CBC and C'
char CBCplusCprime[16];
blockCrypt16( &CnMinusOne[0], &CBCplusCprime[0] );
// we then xor the first few bytes with the "in" bytes (Cn)
// to recover Pn, which we put in out
char* scanner = in;
char* outScanner = out;
for ( int i = 0; i < size; i++, scanner++, outScanner++ ) {
*outScanner = *scanner ^ CBCplusCprime[i];
}
// We now recover the original CnMinusOne, which consists of
// the first "size" bytes of "in" data, followed by the
// "Cprime" portion of CBCplusCprime
scanner = in;
for ( int i = 0; i < size; i++, scanner++ ) {
CnMinusOne[i] = *scanner;
}
for ( int i = size; i < 16; i++ ) {
CnMinusOne[i] = CBCplusCprime[i];
}
// we now decrypt CnMinusOne to get PnMinusOne xored with Cn-2
blockCrypt16( &CnMinusOne[0], &PnMinusOne[0] );
for ( int i = 0; i < 16; i++ ) {
PnMinusOne[i] = PnMinusOne[i] ^ prevCipher[i];
}
// So at this point, out has PnMinusOne
qBlockPush( &CnMinusOne[0], &PnMinusOne[0] );
qBlockFlush();
flushOutput( out, size );
} else {
qBlockPop( &PnMinusOne[0], &CnMinusOne[0] );
char Pn[16];
bzero( &Pn[0], 16 );
memcpy( &Pn[0], in, size );
for ( int i = 0; i < 16; i++ ) {
Pn[i] = CnMinusOne[i] ^ Pn[i];
}
blockCrypt16( &Pn[0], out );
qBlockPush( &Pn[0], out ); // now we officially have Cn-1
qBlockFlush(); // write them all out
flushOutput( &CnMinusOne[0], size ); // old Cn-1 becomes new partial Cn
}
qBlockDefined = false;
}
}
void TwoFish::qBlockPush( char* p, char* c ) {
if ( qBlockDefined ) {
qBlockFlush();
}
memcpy( &prevCipher[0], &qBlockPlain[0], 16 );
memcpy( &qBlockPlain[0], p, 16 );
memcpy( &qBlockCrypt[0], c, 16 );
qBlockDefined = true;
}
void TwoFish::qBlockPop( char* p, char* c ) {
memcpy( p, &qBlockPlain[0], 16 );
memcpy( c, &qBlockCrypt[0], 16 );
qBlockDefined = false;
}
//
// flush a complete block to all active output areas
// this occurs when we know the block does not need to be
// re-encrypted or re-decrypted. The redoing of encryption
// and decryption is necessary for cipher text stealing technique
// and is done on the last complete block.
//
void TwoFish::qBlockFlush() {
flushOutput( &qBlockCrypt[0], 16 );
}
void TwoFish::flush() {
if ( qBlockDefined ) {
qBlockFlush();
}
}
void TwoFish::blockCrypt16( char* in, char* out ) {
int inOffset = 0;
int outOffset = 0;
unsigned int x0 = (in[inOffset] & 0xFF) |
(in[inOffset+1] & 0xFF) << 8 |
(in[inOffset+2] & 0xFF) << 16 |
(in[inOffset+3] & 0xFF) << 24;
inOffset += 4;
unsigned int x1 = (in[inOffset] & 0xFF) |
(in[inOffset+1] & 0xFF) << 8 |
(in[inOffset+2] & 0xFF) << 16 |
(in[inOffset+3] & 0xFF) << 24;
inOffset += 4;
unsigned int x2 = (in[inOffset] & 0xFF) |
(in[inOffset+1] & 0xFF) << 8 |
(in[inOffset+2] & 0xFF) << 16 |
(in[inOffset+3] & 0xFF) << 24;
inOffset += 4;
unsigned int x3 = (in[inOffset] & 0xFF) |
(in[inOffset+1] & 0xFF) << 8 |
(in[inOffset+2] & 0xFF) << 16 |
(in[inOffset+3] & 0xFF) << 24;
/* unsigned int x0;
unsigned int x1;
unsigned int x2;
unsigned int x3;
in += inOffset;
memcpy( &x0, in, 4 );
in += 4;
memcpy( &x1, in, 4 );
in += 4;
memcpy( &x2, in, 4 );
in += 4;
memcpy( &x3, in, 4 );*/
x0 ^= subKeys[0];
x1 ^= subKeys[1];
x2 ^= subKeys[2];
x3 ^= subKeys[3];
int k, t0, t1;
if ( decrypt ) {
k = 39;
for (int R = 0; R < ROUNDS; R += 2) {
t0 = Fe320( sBox, x0 );
t1 = Fe323( sBox, x1 );
x3 ^= t0 + (t1<<1) + subKeys[k--];
x3 = x3 >> 1 | x3 << 31;
x2 = x2 << 1 | x2 >> 31;
x2 ^= t0 + t1 + subKeys[k--];
t0 = Fe320( sBox, x2 );
t1 = Fe323( sBox, x3 );
x1 ^= t0 + (t1<<1) + subKeys[k--];
x1 = x1 >> 1 | x1 << 31;
x0 = x0 << 1 | x0 >> 31;
x0 ^= t0 + t1 + subKeys[k--];
}
} else {
k = 8;
for (int R = 0; R < ROUNDS; R += 2) {
t0 = Fe320( sBox, x0 );
t1 = Fe323( sBox, x1 );
x2 ^= t0 + t1 + subKeys[k++];
x2 = x2 >> 1 | x2 << 31;
x3 = x3 << 1 | x3 >> 31;
x3 ^= t0 + (t1<<1) + subKeys[k++];
t0 = Fe320( sBox, x2 );
t1 = Fe323( sBox, x3 );
x0 ^= t0 + t1 + subKeys[k++];
x0 = x0 >> 1 | x0 << 31;
x1 = x1 << 1 | x1 >> 31;
x1 ^= t0 + (t1<<1) + subKeys[k++];
}
}
x2 ^= subKeys[4];
x3 ^= subKeys[5];
x0 ^= subKeys[6];
x1 ^= subKeys[7];
out += outOffset;
/*memcpy( out, &x2, 4 );
out += 4;
memcpy( out, &x3, 4 );
out += 4;
memcpy( out, &x0, 4 );
out += 4;
memcpy( out, &x1, 4 );*/
*out++ = (x2 );
*out++ = (x2 >> 8);
*out++ = (x2 >> 16);
*out++ = (x2 >> 24);
*out++ = (x3 );
*out++ = (x3 >> 8);
*out++ = (x3 >> 16);
*out++ = (x3 >> 24);
*out++ = (x0 );
*out++ = (x0 >> 8);
*out++ = (x0 >> 16);
*out++ = (x0 >> 24);
*out++ = (x1 );
*out++ = (x1 >> 8);
*out++ = (x1 >> 16);
*out++ = (x1 >> 24);
}
/**
* Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box
* 32-bit entity from two key material 32-bit entities.
*
* @param k0 1st 32-bit entity.
* @param k1 2nd 32-bit entity.
* @return Remainder polynomial generated using RS code
*/
int TwoFish::RS_MDS_Encode( int k0, int k1 ) {
int r = k1;
for (int i = 0; i < 4; i++) // shift 1 byte at a time
RS_rem( r );
r ^= k0;
for (int i = 0; i < 4; i++)
RS_rem( r );
return r;
}
int TwoFish::F32( int k64Cnt, int x, int* k32 ) {
int b0 = b0(x);
int b1 = b1(x);
int b2 = b2(x);
int b3 = b3(x);
int k0 = k32[0];
int k1 = k32[1];
int k2 = k32[2];
int k3 = k32[3];
int result = 0;
switch (k64Cnt & 3) {
case 1:
result =
MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)] ^
MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)] ^
MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)] ^
MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
break;
case 0: // same as 4
b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
case 3:
b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
case 2:
// 128-bit keys (optimize for this case)
result =
MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)] ^
MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)] ^
MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)] ^
MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
break;
}
return result;
}
int TwoFish::Fe320( int* sBox, int x ) {
return sBox[ b0(x) << 1 ] ^
sBox[ (b1(x) << 1) | 1] ^
sBox[0x200 + (b2(x) << 1) ] ^
sBox[0x200 + (b3(x) << 1) | 1];
}
int TwoFish::Fe323( int* sBox, int x ) {
return sBox[ (b3(x) << 1) ] ^
sBox[ (b0(x) << 1) | 1] ^
sBox[0x200 + (b1(x) << 1) ] ^
sBox[0x200 + (b2(x) << 1) | 1];
}
int TwoFish::Fe32( int* sBox, int x, int R ) {
return sBox[ 2*_b(x, R ) ] ^
sBox[ 2*_b(x, R+1) + 1] ^
sBox[0x200 + 2*_b(x, R+2) ] ^
sBox[0x200 + 2*_b(x, R+3) + 1];
}
static char key[32];
char* generateKey( char* s ) {
int sIdx = 0;
for ( int i = 0; i < 32; i++ ) {
char sval = *( s + sIdx );
if (( sval >= '0' ) && ( sval <= '9' )) {
key[i] = sval;
} else if (( sval >= 'a' ) && ( sval <= 'f' )) {
key[i] = sval;
} else {
int q = sval%16;
if ( q < 10 ) {
key[i] = ('0' + q);
} else {
key[i] = ('a' + q - 10);
}
}
sIdx++;
if ( *( s + sIdx ) == 0 ) {
sIdx = 0;
}
}
return( &key[0] );
}
AsciiTwofish::AsciiTwofish( TwoFish* e ) {
engine = e;
}
void AsciiTwofish::encryptAscii( char* in, char* out, int outBufferSize ) {
engine->setDecrypt( false );
engine->resetCBC();
unsigned char byteBuf[200];
char* originalOut = out;
// encrypt one block at a time with twofish
char inList[16];
unsigned char outList[16];
engine->setOutputBuffer( byteBuf );
int remaining = strlen( in );
int len = remaining;
int bidx = 0;
while ( remaining > 0 ) {
if ( remaining > 16 ) {
memcpy( inList, in + bidx, 16 );
engine->blockCrypt( inList, (char*)outList, 16 );
} else {
memcpy( inList, in + bidx, remaining );
engine->blockCrypt( inList, (char*)outList, remaining );
}
bidx += 16;
remaining -= 16;
}
engine->flush();
// now do totally stupid ascii encoding of bytes
if ( outBufferSize < len*3 ) {
printf( "Hey, outBufferSize is %d, but len*3 is %d\n", outBufferSize, len*3 );
} else {
for ( int i = 0; i < len; i++ ) {
sprintf( out, "%03d", byteBuf[i] );
out += 3;
}
}
engine->setOutputBuffer( NULL );
}
void AsciiTwofish::decryptAscii( char* in, char* out ) {
engine->setDecrypt( true );
engine->resetCBC();
engine->setOutputBuffer( (unsigned char*)out );
int inLen = strlen( in );
if (( *( in + inLen - 1 ) == '\n' ) ||
( *( in + inLen - 1 ) == '\r' )) {
*( in + inLen - 1 ) = 0;
inLen = strlen( in );
}
unsigned char byteBuf[200];
int byteBufIdx = 0;
// first convert ascii to bytes, placing in another buffer
for ( int i = 0; i < inLen; i += 3 ) {
unsigned int x = 0;
x = x * 10 + ( *in++ - '0' );
x = x * 10 + ( *in++ - '0' );
x = x * 10 + ( *in++ - '0' );
byteBuf[ byteBufIdx++ ] = x;
byteBuf[ byteBufIdx ] = 0;
}
// then run it through twofish placing result into command buffer
char inList[16];
unsigned char outList[16];
int remaining = byteBufIdx;
*( out + byteBufIdx ) = 0;
int bidx = 0;
while ( remaining > 0 ) {
if ( remaining > 16 ) {
memcpy( inList, &byteBuf[bidx], 16 );
engine->blockCrypt( inList, (char*)outList, 16 );
} else {
memcpy( inList, &byteBuf[bidx], remaining );
engine->blockCrypt( inList, (char*)outList, remaining );
}
bidx += 16;
remaining -= 16;
}
engine->flush();
engine->setOutputBuffer( NULL );
*( out + byteBufIdx ) = 0;
}
|