File: cldata_gen_pandas.py

package info (click to toggle)
cryptominisat 5.11.4%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,432 kB
  • sloc: cpp: 55,148; ansic: 9,642; python: 8,899; sh: 1,336; php: 477; sql: 403; javascript: 173; xml: 34; makefile: 15
file content (454 lines) | stat: -rwxr-xr-x 16,930 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.

from __future__ import print_function
import sqlite3
import optparse
import time
import pickle
import re
import pandas as pd
import numpy as np
import os.path
import sys
import helper


class QueryAddIdxes (helper.QueryHelper):
    def __init__(self, dbfname):
        super(QueryAddIdxes, self).__init__(dbfname)

    def measure_size(self):
        t = time.time()
        ret = self.c.execute("select count() from reduceDB")
        rows = self.c.fetchall()
        rdb_rows = rows[0][0]
        print("We have %d lines of RDB" % (rdb_rows))

        t = time.time()
        ret = self.c.execute("select count() from clause_stats")
        rows = self.c.fetchall()
        clss_rows = rows[0][0]
        print("We have %d lines of clause_stats" % (clss_rows))

    def create_indexes(self):
        t = time.time()
        print("Recreating indexes...")
        queries = """
        create index `idxclid33` on `sum_cl_use` (`clauseID`, `last_confl_used`);
        ---
        create index `idxclid1` on `clause_stats` (`clauseID`, conflicts, latest_satzilla_feature_calc);
        create index `idxclid1-2` on `clause_stats` (`clauseID`);
        create index `idxclid2` on `clause_stats` (clauseID, conflicts, latest_satzilla_feature_calc);
        create index `idxclid5` on `tags` ( `name`);
        ---
        create index `idxclid6` on `reduceDB` (`clauseID`, conflicts);
        create index `idxclid6-9` on `reduceDB` (`conflicts`);
        create index `idxclid9` on `reduceDB_common` (`conflicts`, `latest_satzilla_feature_calc`);
        create index `idxclid9-2` on `reduceDB_common` (`conflicts`, `latest_satzilla_feature_calc`);
        create index `idxclid9-3` on `reduceDB_common` (`conflicts`);
        create index `idxclid9-4` on `reduceDB_common` (`latest_satzilla_feature_calc`);
        create index `idxclid6-2` on `reduceDB` (`clauseID`, `dump_no`);
        create index `idxclid6-3` on `reduceDB` (`clauseID`, `conflicts`, `dump_no`);
        create index `idxclid6-4` on `reduceDB` (`clauseID`, `conflicts`)
        ---
        create index `idxclid7` on `satzilla_features` (`latest_satzilla_feature_calc`);
        ---
        create index `idxclidUCLS-1` on `used_clauses` ( `clauseID`, `used_at`);
        create index `idxclidUCLS-2` on `used_clauses` ( `used_at`);
        ---
        create index `idxcl_last_in_solver-1` on `cl_last_in_solver` ( `clauseID`, `conflicts`);
        ---
        create index `used_later_percentiles_idx3` on `used_later_percentiles` (`type_of_dat`, `percentile_descr`, `percentile`, `val`);
        create index `used_later_percentiles_idx2` on `used_later_percentiles` (`type_of_dat`, `percentile_descr`, `val`);
        """
        for l in queries.split('\n'):
            t2 = time.time()

            if options.verbose:
                print("Creating index: ", l)
            self.c.execute(l)
            if options.verbose:
                print("Index creation T: %-3.2f s" % (time.time() - t2))

        print("indexes created T: %-3.2f s" % (time.time() - t))


class QueryCls (helper.QueryHelper):
    def __init__(self, dbfname, tier, table):
        super(QueryCls, self).__init__(dbfname)
        self.fill_sql_query(tier, table=table)

    def fill_sql_query(self, tier, table):
        # sum_cl_use
        self.sum_cl_use = helper.query_fragment(
            "sum_cl_use", [], "sum_cl_use", options.verbose, self.c)

        # RDB data
        not_cols = [
            "reduceDB_called"
            , "clauseID"
            , "in_xor"
            , "locked"
            , "conflicts"
            , "activity_rel"]
        self.rdb0_dat = helper.query_fragment(
            "reduceDB", not_cols, "rdb0", options.verbose, self.c)

        # reduceDB_common data
        not_cols = [
            "reduceDB_called"
            , "simplifications"
            , "restarts"
            #, "conflicts"
            , "latest_satzilla_feature_calc"
            , "runtime"
            ]
        self.rdb0_common_dat = helper.query_fragment(
            "reduceDB_common", not_cols, "rdb0_common", options.verbose, self.c)

        # clause data
        not_cols = [
            "simplifications"
            , "restarts"
            , "prev_restart"
            , "antecedents_long_red_age_max"
            , "antecedents_long_red_age_min"
            , "latest_satzilla_feature_calc"
            , "clauseID"]
        self.clause_dat = helper.query_fragment(
            "clause_stats", not_cols, "cl", options.verbose, self.c)

        # satzilla data
        not_cols = [
            "simplifications"
            , "restarts"
            , "conflicts"
            , "latest_satzilla_feature_calc"
            , "irred_glue_distr_mean"
            , "irred_glue_distr_var"]
        self.satzfeat_dat = helper.query_fragment(
            "satzilla_features", not_cols, "szfeat", options.verbose, self.c)

        self.common_limits = """
        order by random()
        limit {limit}
        """

        q_time_base="""
        join {table}_{tier} on
            {table}_{tier}.clauseID = rdb0.clauseID
            and {table}_{tier}.rdb0conflicts = rdb0.conflicts
        """

        q_columns_base="""
            , {table}_{tier}.used_later as `x.{table}_{tier}`
            , {table}_{tier}.percentile_fit as `x.{table}_{tier}_topperc`
            """

        q_time = q_time_base.format(tier=tier, table=table)
        q_columns = q_columns_base.format(tier=tier, table=table)

        # final big query
        self.q_select = """
        SELECT
        tags.val as `fname`
        {clause_dat}
        {rdb0_dat}
        {rdb0_common_dat}
        {sum_cl_use}
        , (rdb0.conflicts - rdb0.introduced_at_conflict) as `cl.time_inside_solver`
        , (sum_cl_use.last_confl_used - rdb0.introduced_at_conflict) as `x.a_lifetime`
        {q_columns}
        , sum_cl_use.num_used as `x.sum_cl_use`


        FROM
        reduceDB as rdb0

        -- this is DELIBERATEY left-join: this way, clauses that as ternary
        -- resolvents or otherwise generated during in-processing
        -- can still be used
        left join clause_stats as cl on
            cl.clauseID = rdb0.clauseID

        join reduceDB_common as rdb0_common on
            rdb0_common.conflicts = rdb0.conflicts

        join sum_cl_use on
            sum_cl_use.clauseID = rdb0.clauseID

        {q_time}

        join cl_last_in_solver on
            cl_last_in_solver.clauseID = rdb0.clauseID

        , tags

        WHERE
        (cl.clauseID != 0 OR cl.clauseID is NULL)
        and tags.name = "filename"

        -- to avoid missing clauses and their missing data to affect results
        and rdb0.conflicts + {del_at_least} <= cl_last_in_solver.conflicts
        """

        self.myformat = {
            "limit": 1000*1000*1000,
            "clause_dat": self.clause_dat,
            "satzfeat_dat_cur": self.satzfeat_dat.replace("szfeat.", "szfeat_cur."),
            "rdb0_dat": self.rdb0_dat,
            "sum_cl_use": self.sum_cl_use,
            "rdb0_common_dat": self.rdb0_common_dat,
            "q_time": q_time,
            "q_columns": q_columns
        }

    def get_used_later_percentiles(self, name, table):
        cur = self.conn.cursor()
        q = """
        select
            `type_of_dat`,
            `percentile_descr`,
            `percentile`,
            `val`
        from {table}_percentiles
        where `type_of_dat` = '{name}'
        """.format(name=name, table=table)
        cur.execute(q)
        rows = cur.fetchall()
        lookup = {}
        for row in rows:
            mystr = "%s_%s_perc" % (row[1], row[2])
            print("table: {table} type: {t}, perc_desc: {perc_desc}, perc: {perc}, val: {val}".format(
                table=table,
                t=row[0],
                perc_desc=row[1],
                perc=row[2],
                val=row[3]))
            lookup[mystr] = row[3]
        #print("perc lookup:", lookup)

        return lookup

    def get_one_data(self, tier, table):
        perc = self.get_used_later_percentiles(tier, table)
        self.myformat["del_at_least"] = getattr(options, tier)

        # when del_at_least is over 2 million, then we need to make this smaller
        #    or we will delete all data
        if self.myformat["del_at_least"] > 2*1000*1000:
            self.myformat["del_at_least"] = 100*1000

        # Make sure these stratas are equally represented
        t = time.time()
        dfs = self.run_stratified_queries(
            limit=options.limit, perc=perc, tier=tier, table=table)
        data = pd.concat(dfs)
        print("** Queries finished. Total size: %s  -- T: %-3.2f" % (
            data.shape, time.time() - t))
        return data

    # perc == percentile distribution
    # limit == MAX in total
    # tier == forever/long/short
    def run_stratified_queries(self, limit, perc, tier, table):
        dfs = []
        final_limit = limit
        # NOTE: these are NON-ZERO percentages, but we replace 100 with "0", so the LAST chunk contains ALL, including 0, which is a large part of the data
        for beg_perc, end_perc in [(0.0, options.cut1), (options.cut1, options.cut2), (options.cut2, 100.0)]:
            beg = perc["top_non_zero_{perc}_perc".format(perc=beg_perc)]
            if end_perc == 100.0:
                end = 0.0
            else:
                end = perc["top_non_zero_{perc}_perc".format(perc=end_perc)]
            what_to_strata = "`x.{table}_{tier}`".format(tier=tier, table=table)

            print("Limit is {limit} value strata perc: ({a}, {b}) translates to value strata ({beg}, {end})".format(
                limit=limit, a=beg_perc, b=end_perc, beg=beg, end=end))

            # create one query for (beg,end) with different dump numbers
            df, weighted_sizes = self.query_strata_per_dumpno(
                str(self.q_select),
                limit,
                what_to_strata=what_to_strata,
                strata=(beg,end))
            dfs.append(df)
        return dfs

    def query_strata_per_dumpno(self, q, limit, what_to_strata, strata):
        print("* Getting one set of data with limit %s" % limit)
        weighted_size = []
        df_parts = []

        def one_part(mult, dump_no_filter=""):
            self.myformat["limit"] = int(limit*mult)
            df_parts.append(self.one_query(q + dump_no_filter, what_to_strata, strata))
            print("--> Num rows for strata %s -- '%s': %s" % (strata, dump_no_filter, df_parts[-1].shape[0]))

            ws = df_parts[-1].shape[0]/mult
            print("--> The weight was %f so weighted size is: %d" % (mult, int(ws)))
            weighted_size.append(ws)

        one_part(1/4.0, dump_no_filter=" and rdb0.dump_no = 1 ")
        one_part(1/4.0, dump_no_filter=" and rdb0.dump_no = 2 ")
        one_part(1/4.0, dump_no_filter=" and rdb0.dump_no > 2 ")
        one_part(1/4.0, dump_no_filter=" and rdb0.dump_no > 20 ")

        df = pd.concat(df_parts)
        print("-> size of all dump_no-s, strata {strata} data: {size}".format(
            strata=strata, size=df.shape))

        return df, weighted_size

    def one_query(self, q, what_to_strata, strata):
        q = q.format(**self.myformat)

        if strata[1] == 0.0:
            my_less_equal = ">="
        else:
            my_less_equal = ">"

        q = """
        select * from ( {q} )
        where
        {what_to_strata} <= {beg}
        and {what_to_strata} {my_less_equal} {end}""".format(
            q=q,
            what_to_strata=what_to_strata,
            beg=strata[0],
            end=strata[1],
            my_less_equal=my_less_equal)

        q += self.common_limits
        q = q.format(**self.myformat)

        t = time.time()
        sys.stdout.write("-> Running query for {} stratas {}...".format(what_to_strata, strata))
        sys.stdout.flush()
        if options.dump_sql:
            print("query:", q)
        df = pd.read_sql_query(q, self.conn)
        print("T: %-3.1f" % (time.time() - t))
        return df


def dump_dataframe(df, name):
    if options.dump_csv:
        fname = "%s.csv" % name
        print("Dumping CSV data to:", fname)
        df.to_csv(fname, index=False, columns=sorted(list(df)))

    fname = "%s.dat" % name
    print("Dumping pandas data to:", fname)
    with open(fname, "wb") as f:
        pickle.dump(df, f)


def one_database(dbfname):
    with QueryAddIdxes(dbfname) as q:
        q.measure_size()
        helper.drop_idxs(q.c)
        q.create_indexes()

    with helper.QueryFill(dbfname) as q:
        q.delete_and_create_used_laters()
        for tier in ["short", "long", "forever"]:
            for table in ["used_later", "used_later_anc"]:
                q.fill_used_later_X(tier, duration=getattr(options, tier), table=table)
                q.fill_used_later_X_perc_fit(tier, table=table)

    print("Using sqlite3 DB file %s" % dbfname)
    for tier in ["short", "long", "forever"]:
        for table in ["used_later", "used_later_anc"]:
            print("------> Doing tier {tier} table {table}".format(
                tier=tier,table=table))

            with QueryCls(dbfname, tier, table) as q:
                df = q.get_one_data(tier, table)

            if options.verbose:
                print("Describing----")
                dat = df.describe()
                print(dat)
                print("Describe done.---")
                print("Features: ", df.columns.values.flatten().tolist())

            if options.verbose:
                print("Describing post-transform ----")
                print(df.describe())
                print("Describe done.---")
                print("Features: ", df.columns.values.flatten().tolist())

            cleanname = re.sub(r'\.cnf.gz.sqlite$', '', dbfname)
            cleanname = re.sub(r'\.db$', '', dbfname)
            cleanname = re.sub(r'\.sqlitedb$', '', dbfname)
            cleanname = "{cleanname}-cldata-{table}-{tier}-cut1-{cut1}-cut2-{cut2}-limit-{limit}".format(
                cleanname=cleanname,
                cut1=options.cut1,
                cut2=options.cut2,
                limit=options.limit,
                tier=tier,
                table=table)

            dump_dataframe(df, cleanname)


if __name__ == "__main__":
    usage = "usage: %prog [options] file1.sqlite [file2.sqlite ...]"
    parser = optparse.OptionParser(usage=usage)

    # verbosity level
    parser.add_option("--verbose", "-v", action="store_true", default=False,
                      dest="verbose", help="Print more output")
    parser.add_option("--sql", action="store_true", default=False,
                      dest="dump_sql", help="Dump SQL queries")
    parser.add_option("--csv", action="store_true", default=False,
                      dest="dump_csv", help="Dump CSV (for weka)")

    # limits
    parser.add_option("--limit", default=20000, type=int,
                      dest="limit", help="Max number of samples to take from each strata (for each table/tier)")
    parser.add_option("--cut1", default=5.0, type=float,
                      dest="cut1", help="Where to cut the distrib. Default: %default")
    parser.add_option("--cut2", default=30.0, type=float,
                      dest="cut2", help="Where to cut the distrib. Default: %default")

    # debugging is faster with this
    parser.add_option("--noind", action="store_true", default=False,
                      dest="no_recreate_indexes",
                      help="Don't recreate indexes")

    # lengths of short/long
    parser.add_option("--short", default=10000, type=int,
                      dest="short", help="Short duration. Default: %default")
    parser.add_option("--long", default=30*1000, type=int,
                      dest="long", help="Long duration. Default: %default")
    parser.add_option("--forever", default=120*1000, type=int,
                      dest="forever", help="Long duration. Default: %default")

    (options, args) = parser.parse_args()

    if len(args) != 1:
        print("ERROR: You must give exactly one file")
        exit(-1)

    np.random.seed(2097483)
    one_database(args[0])