File: cldata_predict.py

package info (click to toggle)
cryptominisat 5.11.4%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,432 kB
  • sloc: cpp: 55,148; ansic: 9,642; python: 8,899; sh: 1,336; php: 477; sql: 403; javascript: 173; xml: 34; makefile: 15
file content (634 lines) | stat: -rwxr-xr-x 25,855 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.

# pylint: disable=invalid-name,line-too-long,too-many-locals,consider-using-sys-exit

import operator
import re
import time
import argparse
import sys
import os
import itertools
import pandas as pd
import pickle
import sklearn
import sklearn.svm
import sklearn.tree
import sklearn.preprocessing
import numpy as np
import sklearn.metrics
import sklearn.impute
import matplotlib.pyplot as plt
import sklearn.ensemble
import sklearn.linear_model
import helper
import xgboost as xgb
import lightgbm as lgbm
import ast
import math
import functools
try:
    import mlflow
except ImportError:
    mlflow_avail = False
else:
    mlflow_avail = True

ver = sklearn.__version__.split(".")
print("version: ", ver)
if int(ver[0]) == 0 and int(ver[1]) < 20:
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split

MISSING=np.NaN

class MyEnsemble:
    def __init__(self, models):
        self.models = models

    def fit(self, X_train, y_train, weights=None):
        assert weights is None
        for model in self.models:
            model.fit(X_train, y_train)

    def predict(self, X_data):
        #df = pd.DataFrame(index=range(numRows),columns=range(numCols))
        vals = np.ndarray(shape=(len(self.models), len(X_data)), dtype=float)
        for i in range(len(self.models)):
            pred = self.models[i].predict(X_data)
            vals[i] = pred

        ret = np.median(vals, axis=0)
        return ret



class Learner:
    def __init__(self, df):
        self.df = df

    def count_bad_ok(self, df):
        files = df[["x.class", "rdb0.dump_no"]].groupby("x.class").count()
        if files["rdb0.dump_no"].index[0] == 0:
            bad = files["rdb0.dump_no"][0]
            ok = files["rdb0.dump_no"][1]
        else:
            bad = files["rdb0.dump_no"][1]
            ok = files["rdb0.dump_no"][0]

        assert bad > 0, "No need to train, data only contains BAD(0)"
        assert ok > 0, "No need to train, data only contains OK(1)"

        return bad, ok

    def filter_percentile(self, df, features, perc):
        low = df.quantile(perc, axis=0)
        high = df.quantile(1.0-perc, axis=0)
        df2 = df.copy()
        for i in features:
            df2 = df2[(df2[i] >= low[i]) & (df2[i] <= high[i])]
            print("Filtered to %f on %-30s, shape now: %s" %
                  (perc, i, df2.shape))

        print("Original size:", df.shape)
        print("New size:", df2.shape)
        return df2

    def filtered_conf_matrixes(self, dump_no, data, features, to_predict, clf,
                               toprint, highlight=False):
        # filter test data
        if dump_no is not None:
            print("\nCalculating confusion matrix -- dump_no == %s" % dump_no)
            toprint += " dump no %d" % dump_no
            data2 = data[data["rdb0.dump_no"] == dump_no]
        else:
            print("\nCalculating confusion matrix -- ALL dump_no")
            data2 = data

        return helper.calc_regression_error(
            data2, features, to_predict, clf, toprint,
            highlight=highlight)

    def importance_XGB(self, clf, features):
        impdf = []
        #print("clf:", clf)
        #print("clf-booster:", clf.feature_importances_)

        for i in range(len(clf.feature_importances_)):
            score = clf.feature_importances_[i]
            ft = features[i]
            impdf.append({'feature': ft, 'importance': score})
        impdf = pd.DataFrame(impdf)
        impdf = impdf.sort_values(by='importance', ascending=False).reset_index(drop=True)
        impdf['importance'] /= impdf['importance'].sum()
        pd.set_option('display.max_rows', None)
        pd.set_option('display.max_columns', None)
        pd.set_option('display.width', None)
        pd.set_option('display.max_colwidth', None)
        print("impdf:", impdf)

        return impdf

    def dump_ml_test_data(self, test, fname, to_predict) :
        f = open(fname, "w")
        test.reset_index(inplace=True)
        for i in range(test.shape[0]):
            towrite = ""
            towrite += "%s " % test[TODO_go_through_all_features_here].iloc[i]
            assert False, "not implemented, must put all features here in a loop"
            towrite += "%s " % test[to_predict].iloc[i]
            towrite += "\n"
            f.write(towrite)

    def scale_and_impute(self, train, test, features, extra_feats):
        trans_train = train[features].values
        trans_test = test[features].values

        # Scale data if linear
        my_scaler = sklearn.preprocessing.Normalizer(
            norm='l1',
            copy=False)
        my_scaler.fit_transform(trans_train)
        my_scaler.transform(trans_test)

        # Impute data
        imp_mean = sklearn.impute.SimpleImputer(
            #missing_values=MISSING,
            copy=False,
            strategy='mean')
        imp_mean.fit_transform(trans_train)
        imp_mean.transform(trans_test)

        # recreate dataframe
        trans_train = np.append(trans_train, train[extra_feats].values, axis=1)
        df_trans_train = pd.DataFrame(trans_train, columns=features+extra_feats)
        train = df_trans_train

        trans_test = np.append(trans_test, test[extra_feats].values, axis=1)
        df_trans_test = pd.DataFrame(trans_test, columns=features+extra_feats)
        test = df_trans_test

        print("Value distribution of 'rdb0.glue' in test:\n%s" % test["rdb0.glue"].value_counts())
        print("Value distribution of 'rdb0.glue' in train:\n%s" % train["rdb0.glue"].value_counts())

        return train, test

    def one_regressor(self, features, to_predict):
        print("-> Number of features  :", len(features))
        print("-> Number of datapoints:", self.df.shape)
        print("-> Predicting          :", to_predict)

        # these are needed for prediction/later checks, so let's add them in
        #       if they are not already in the features
        extra_feats = [to_predict]
        for missing_needed in ["rdb0.glue", "rdb0.dump_no"]:
            if missing_needed not in features:
                extra_feats.append(missing_needed)
        df = self.df[features+extra_feats].copy()
        if options.verbose:
            pd.set_option('display.max_rows', len(df.dtypes))
            print(df.dtypes)
            pd.reset_option('display.max_rows')


        if options.check_row_data:
            helper.check_too_large_or_nan_values(df, features)

        print("Value distribution of 'rdb0.dump_no':\n%s" % df["rdb0.dump_no"].value_counts())
        print("Value distribution of 'rdb0.glue':\n%s" % df["rdb0.glue"].value_counts())
        print("Value distribution of to_predict:\n%s" % df[to_predict].value_counts())

        train, test = train_test_split(df, test_size=0.33, random_state=prng)
        if options.regressor in ["linear", "tree"]:
            train, test = self.scale_and_impute(train, test, features, extra_feats)


        if options.poly_features:
            transformed = df[features].values

            # poly transform
            poly = sklearn.preprocessing.PolynomialFeatures(2)
            transformed = poly.fit_transform(transformed)
            features = poly.get_feature_names(input_features=features)

            # recreate dataframe
            transformed = np.append(transformed, df[extra_feats].values, axis=1)
            df_trans = pd.DataFrame(transformed, columns=features+extra_feats)
            df = df_trans

        X_train = train[features]
        y_train = train[to_predict]

        t = time.time()
        clf = None

        split_point = helper.calc_min_split_point(
            df, options.min_samples_split)

        clf_tree = sklearn.tree.DecisionTreeRegressor(
            max_depth=options.xboost_max_depth,
            min_samples_split=split_point,
            random_state=prng)
        clf_svm_pre = sklearn.svm.SVC(
            C=500,
            gamma=10**-5,
            random_state=prng)
        clf_svm = sklearn.ensemble.BaggingClassifier(
            clf_svm_pre,
            n_estimators=3,
            max_samples=0.5, max_features=0.5,
            random_state=prng)
        clf_linear = sklearn.linear_model.LinearRegression()
        clf_forest = sklearn.ensemble.RandomForestRegressor(
            n_estimators=options.num_trees,
            max_depth=options.xboost_max_depth,
            max_features="sqrt",
            #min_samples_leaf=split_point,
            random_state=prng)
        clf_ridge = sklearn.linear_model.Ridge(alpha=.5)
        clf_lasso = sklearn.linear_model.Lasso()
        clf_elasticnet = sklearn.linear_model.ElasticNet()
        clf_xgboost = xgb.XGBRegressor(
                objective='reg:squarederror',
                #missing=MISSING,
                min_child_weight=options.min_child_weight_xgboost, # from doc: "In linear regression task, this simply corresponds to minimum number of instances needed to be in each node."
                max_depth=options.xboost_max_depth,
                subsample=options.xgboost_subsample,
                n_estimators=options.n_estimators_xgboost)
        clf_lgbm = model = lgbm.LGBMRegressor(
            subsample=options.xgboost_subsample,
            min_child_samples=options.min_child_weight_xgboost, # from doc: "Minimum number of data needed in a child"
            max_depth=options.xboost_max_depth,
            n_estimators=options.n_estimators_xgboost)

        if options.regressor == "tree":
            clf = clf_tree
        elif options.regressor == "svm":
            clf = clf_svm
        elif options.regressor == "linear":
            clf = clf_linear
        elif options.regressor == "ridge":
            clf = clf_ridge
        elif options.regressor == "lasso":
            clf = clf_lasso
        elif options.regressor == "elasticnet":
            clf = clf_elasticnet
        elif options.regressor == "forest":
            clf = clf_forest
        elif options.regressor == "lgbm":
            clf = clf_lgbm
        elif options.regressor == "xgb":
            print("Using xgboost no. estimators:", options.n_estimators_xgboost)
            clf = clf_xgboost
        elif options.regressor == "median":
            mylist = [("xgb", clf_xgboost), ("linear", clf_linear),
                      ("elasticnet", clf_elasticnet), ("lasso", clf_lasso)]
            clf = sklearn.ensemble.VotingRegressor(estimators=mylist, weights=[1.0, 0.5, 0.5, 0.5])
            #clf = MyEnsemble(mylist)
        else:
            print(
                "ERROR: You MUST give one of: tree/forest/svm/linear/bagging classifier")
            exit(-1)
        if options.gen_topfeats:
            print("WARNING: Replacing normal forest/xgboost with top feature computation!!!")
            if options.regressor == "forest":
                print("for TOP calculation, we are replacing the forest predictor!!!")
                clf = sklearn.ensemble.RandomForestRegressor(
                    n_estimators=options.num_trees*5,
                    max_features="sqrt",
                    random_state=prng)
            elif options.regressor == "xgb":
                print("for TOP calculation, we are replacing the XGBOOST predictor!!!")
                clf = xgb.XGBRegressor(
                    objective='reg:squarederror',
                    min_child_weight=options.min_child_weight_xgboost,
                    max_depth=options.xboost_max_depth,
                    #missing=MISSING
                    )
            else:
                print("Error: --topfeats only works with xgboost/forest")
                exit(-1)


        clf.fit(X_train, y_train)
        print("Training finished. T: %-3.2f" % (time.time() - t))

        if mlflow_avail:
            mlflow.log_param("features used", features)
            # mlflow.log_metric("all features: ", train.columns.values.flatten().tolist())
            mlflow.log_metric("train num rows", train.shape[0])
            mlflow.log_metric("test num rows", test.shape[0])


        if options.dot is not None:
            if options.regressor == "tree":
                helper.output_to_classical_dot(
                    clf, features,
                    fname="{name}-{table}-{tier}.dot".format(
                        name=options.dot, tier=options.tier, table=options.table))

            elif options.regressor == "xgb":
                dot_data = xgb.to_graphviz(booster=clf, num_trees=9)
                with open("x.dot", "w") as f:
                    f.write("%s" % dot_data)

            else:
                print("ERROR: You cannot use the DOT function on non-trees")
                exit(-1)

        if options.basedir:
            fname_pred_out = options.basedir + "/predictor-{table}-{tier}-{regr}.json".format(
                tier=options.tier, table=options.table, regr=options.regressor)
            if options.regressor == "xgb":
                booster = clf.get_booster()
                booster.save_model(fname_pred_out)
                print("==> Saved XGB model to: ", fname_pred_out)
            elif options.basedir and options.regressor == "lgbm":
                clf.booster_.save_model(fname_pred_out)
                print("==> Saved LGBM model to: ", fname_pred_out)
        else:
            print("WARNING: NOT writing code -- you must use xgboost/lgbm and give dir for that")


        # print feature rankings
        if options.regressor == "forest":
            helper.print_feature_ranking(
                clf, X_train,
                top_num_features=200,
                features=features,
                plot=options.show)
        elif options.regressor == "xgb":
            self.importance_XGB(clf, features=features)

        # print distribution of error
        print("--------------------------")
        print("-       test data        -")
        print("--------------------------")
        for dump_no in [1, 2, 3, 10, 20, 40, None]:
            self.filtered_conf_matrixes(
                dump_no, test, features, to_predict, clf, "test data", highlight=True)
        print("--------------------------------")
        print("--      train+test data        -")
        print("--------------------------------")
        for dump_no in [1, None]:
            self.filtered_conf_matrixes(
                dump_no, pd.concat([test, train]), features, to_predict, clf, "test and train data")
        print("--------------------------")
        print("-       train data       -")
        print("--------------------------")
        self.filtered_conf_matrixes(
            dump_no, train, features, to_predict, clf, "train data")

        #print(test[features+to_predict])
        #print(test[to_predict])
        if options.dump_example_data:
            with open("example-data.dat", "wb") as f:
                pickle.dump(test[features+[to_predict]], f)
            self.dump_ml_test_data(test, "../ml_perf_test.txt-{table}-{tier}".format(
                table=options.table, tier=options.tier))
            print("Example data dumped")

    def rem_features(self, feat, to_remove):
        print("To remove: " , to_remove)
        feat_less = list(feat)
        for rem in to_remove:
            for feat in list(feat_less):
                if rem in feat:
                    if options.verbose:
                        print("Removing due to ", rem, " feature from feat_less:", feat)
                    feat_less.remove(feat)

        print("Done.")
        return feat_less

    def learn(self):
        if options.raw_data_plots:
            pd.options.display.mpl_style = "default"
            df.hist()
            df.boxplot()

        if options.features != "best_only":
            features = list(self.df)

            # remove features that would be "cheating" or useless
            torem = []
            for table in ["used_later", "used_later_anc"]:
                for tier in ["short", "long", "forever"]:
                    torem. append("x.{table}_{tier}".format(tier=tier, table=table))

            torem.extend([
                "x.class",
                "x.a_lifetime",
                "fname",
                "sum_cl_use.num_used",
                "x.sum_cl_use",
                "rdb0.dump_no",
                "fname"])
            features = self.rem_features(features, torem)
        else:
            del df["fname"]
            features = helper.get_features(options.best_features_fname)

        to_predict = "x.{table}_{tier}".format(tier=options.tier, table=options.table)
        self.one_regressor(features, to_predict)


if __name__ == "__main__":
    usage = "usage: %(prog)s [options] file.pandas"
    parser = argparse.ArgumentParser(usage=usage)

    parser.add_argument("fname", type=str, metavar='PANDASFILE')
    parser.add_argument("--seed", default=None, type=int,
                        dest="seed", help="Seed of PRNG")
    parser.add_argument("--verbose", "-v", action="store_true", default=False,
                        dest="verbose", help="Print more output")
    parser.add_argument("--printfeat", action="store_true", default=False,
                        dest="print_features", help="Print features")
    parser.add_argument("--features", default="best_only", type=str, dest="features",
                        help="What features to use: all_computed, best_only, best_also, no_computed ")
    parser.add_argument("--bestfeatfile", type=str, default="../../scripts/crystal/best_features-rdb0-only.txt",
                        dest="best_features_fname", help="Name and position of best features file that lists the best features in order")
    parser.add_argument("--polyfeats", action="store_true", default=False,
                        dest="poly_features", help="Add polynomial features")
    parser.add_argument("--dat", type=str, default=None,
                        dest="dat_file", help="Output Pickle of dataframe here")
    parser.add_argument("--dumpexample", default=False, action="store_true",
                        dest="dump_example_data", help="Dump example data")

    # tree/forest options
    parser.add_argument("--split", default=0.01, type=float, metavar="RATIO",
                        dest="min_samples_split", help="Split in tree if this many samples or above. Used as a percentage of datapoints")
    parser.add_argument("--numtrees", default=100, type=int,
                        dest="num_trees", help="How many trees to generate for the forest")

    # generation of predictor
    parser.add_argument("--dot", type=str, default=None,
                        dest="dot", help="Create DOT file")
    parser.add_argument("--filterdot", default=0.05, type=float,
                        dest="filter_dot", help="Filter the DOT output from outliers so the graph looks nicer")
    parser.add_argument("--show", action="store_true", default=False,
                        dest="show", help="Show visual graphs")
    parser.add_argument("--check", action="store_true", default=False,
                        dest="check_row_data", help="Check row data for NaN or float overflow")
    parser.add_argument("--checkverbose", action="store_true", default=False,
                        dest="check_row_data_verbose", help="Check row data for NaN or float overflow in a verbose way, printing them all")
    parser.add_argument("--rawplots", action="store_true", default=False,
                        dest="raw_data_plots", help="Display raw data plots")
    parser.add_argument("--basedir", type=str,
                        dest="basedir", help="The base directory of where the CryptoMiniSat source code is")

    # data filtering
    parser.add_argument("--only", default=1.00, type=float,
                        dest="only_perc", help="Only use this percentage of data")

    # final generator top/final
    parser.add_argument("--topfeats", default=False, action="store_true",
                        dest="gen_topfeats", help="Only generate final predictor")

    # type of regressor
    parser.add_argument("--regressor", type=str, default="xgb",
                        dest="regressor", help="Final classifier should be a: tree, svm, linear, forest, xgboost, bagging")
    parser.add_argument("--xgboostestimators", default=10, type=int,
                        dest="n_estimators_xgboost", help="Number of estimators for xgboost")
    parser.add_argument("--xgboostminchild", default=10, type=int,
                        dest="min_child_weight_xgboost", help="Number of elements in the leaf to split it in xgboost")
    parser.add_argument("--xboostmaxdepth", default=10, type=int,
                        dest="xboost_max_depth", help="Max depth of xboost trees")
    parser.add_argument("--xgboostsubsample", default=1.0, type=float,
                        dest="xgboost_subsample", help="Subsample xgboost on each iteration")

    # which one to generate
    parser.add_argument("--tier", default=None, type=str,
                        dest="tier", help="Tier to do")
    parser.add_argument("--table", default="used_later", type=str,
                        dest="table", help="Table to do")

    options = parser.parse_args()
    prng = np.random.RandomState(options.seed)

    if options.fname is None:
        print("ERROR: You must give the pandas file!")
        exit(-1)

    assert options.min_samples_split <= 1.0, "You must give min_samples_split that's smaller than 1.0"
    if not os.path.isfile(options.fname):
        print("ERROR: '%s' is not a file" % options.fname)
        exit(-1)

    if options.tier is None:
        print("ERROR: you must set --tier, exiting")
        exit(-1)

    if options.table is None:
        print("ERROR: you must set --table, exiting")
        exit(-1)

    if options.best_features_fname is None and "best" in options.features:
        print("You must give best features filename or we cannot add best features")
        exit(-1)

    # ------------
    #  Log all parameters
    # ------------
    if mlflow_avail:
        mlflow.log_param("gen_topfeats", options.gen_topfeats)
        mlflow.log_param("tier", options.tier)
        mlflow.log_param("regressor", options.regressor)
        mlflow.log_param("basedir", options.basedir)
        mlflow.log_param("only_percentage", options.only_perc)
        mlflow.log_param("min_samples_split", options.min_samples_split)
        mlflow.log_param("xboost_max_depth", options.xboost_max_depth)
        mlflow.log_param("num_trees", options.num_trees)
        mlflow.log_param("features", options.features)
        mlflow.log_artifact(options.fname)

    # Read in Pandas Dataframe
    print("Reading dataframe....")
    df = pd.read_pickle(options.fname)

    print("Applying only...")
    df_tmp = df.sample(frac=options.only_perc, random_state=prng)
    df_before_dtype_conv = pd.DataFrame(df_tmp)
    del df_tmp
    del df
    print("-> Number of datapoints after applying '--only':", df_before_dtype_conv.shape)

    # We must convert these or we'll have trouble with inf, -inf, NaN for NULLs
    print("Converting datatypes to those supporting np.NA ...")
    if options.verbose:
        print("Datatypes before:")
        helper.print_datatypes(df_before_dtype_conv)
    df = df_before_dtype_conv.convert_dtypes(
        convert_integer=False, convert_string=False,
        convert_floating=False)
    del df_before_dtype_conv
    if options.verbose:
        print("Datatypes after:")
        helper.print_datatypes(df)

    # Check feature type sanity
    # only "fname" is allowed to be an object (a string)
    for name,ty in zip(list(df), df.dtypes):
        if name == "fname":
            assert ty == object
        else:
            if ty == object:
                print("name: " , name, " is object!")
            assert ty != object

    if options.print_features:
        for f in sorted(list(df)):
            print(f)

    # make missing (None) into NaN
    helper.make_missing_into_nan(df)

    # feature manipulation
    if options.features =="all_computed":
        helper.cldata_add_computed_features(df, options.verbose)
    elif options.features == "best_only" or options.features == "best_also":
        helper.add_features_from_fname(df, options.best_features_fname)
    elif options.features == "no_computed":
        helper.cldata_add_minimum_computed_features(df, options.verbose)
    else:
        print("ERROR: Unrecognized --features option!")
        exit(-1)

    # Check feature type sanity
    for name, mytype in df.dtypes.items():
        if str(mytype) == str("Int64") or str(mytype) == str("Float64"):
            assert False

    print("Filling NA with MISSING..")
    df.replace([np.inf, np.NaN, np.inf, np.NINF, np.Infinity], MISSING, inplace=True)

    if options.dat_file is not None:
        cols = list(df)
        df.to_pickle(options.dat_file, protocol=3)
        print("Dumped DF to pickle: ", options.dat_file)

    if options.check_row_data_verbose:
        helper.check_too_large_or_nan_values(df, list(df))

    # do the heavy lifting
    learner = Learner(df)
    learner.learn()