1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.
# pylint: disable=invalid-name,line-too-long,too-many-locals,consider-using-sys-exit
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import sklearn.metrics
import re
import ast
import math
import time
import os.path
import sqlite3
import functools
from ccg import *
try:
from termcolor import cprint
except ImportError:
termcolor_avail = False
else:
termcolor_avail = True
from pprint import pprint
try:
import mlflow
except ImportError:
mlflow_avail = False
else:
mlflow_avail = True
class QueryHelper:
def __init__(self, dbfname):
if not os.path.isfile(dbfname):
print("ERROR: Database file '%s' does not exist" % dbfname)
exit(-1)
self.conn = sqlite3.connect(dbfname)
self.c = self.conn.cursor()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.conn.commit()
self.conn.close()
class QueryFill (QueryHelper):
def create_indexes(self, verbose=False, used_clauses="used_clauses"):
t = time.time()
print("Recreating indexes...")
queries = """
create index `idxclid6-4` on `reduceDB` (`clauseID`, `conflicts`)
create index `idxclidUCLS-2` on `{used_clauses}` ( `clauseID`, `used_at`);
create index `idxcl_last_in_solver-1` on `cl_last_in_solver` ( `clauseID`, `conflicts`);
""".format(used_clauses=used_clauses)
for l in queries.split('\n'):
t2 = time.time()
if verbose:
print("Creating index: ", l)
self.c.execute(l)
if verbose:
print("Index creation T: %-3.2f s" % (time.time() - t2))
print("indexes created T: %-3.2f s" % (time.time() - t))
def delete_and_create_used_laters(self):
tiers = ["short", "long", "forever"]
tables = ["used_later", "used_later_anc"]
for tier in tiers:
for table in tables:
q = """
DROP TABLE IF EXISTS `{table}_{tier}`;
"""
self.c.execute(q.format(tier=tier, table=table))
# Create and fill used_later_X tables
q_create = """
create table `{table}_{tier}` (
`clauseID` bigint(20) NOT NULL,
`rdb0conflicts` bigint(20) NOT NULL,
`used_later` float,
`percentile_fit` float DEFAULT NULL
);"""
# NOTE: "percentile_fit" is the top percentile this use belongs to. Filled in later.
for tier in tiers:
for table in tables:
self.c.execute(q_create.format(tier=tier, table=table))
idxs = """
create index `{table}_{tier}_idx3` on `{table}_{tier}` (`used_later`);
create index `{table}_{tier}_idx1` on `{table}_{tier}` (`clauseID`, `rdb0conflicts`);
create index `{table}_{tier}_idx2` on `{table}_{tier}` (`clauseID`, `rdb0conflicts`, `used_later`);"""
t = time.time()
for tier in tiers:
for table in tables:
for l in idxs.format(tier=tier, table=table).split('\n'):
self.c.execute(l)
print("used_later* dropped and recreated T: %-3.2f s" % (time.time() - t))
# The most expesive operation of all, when called with "forever"
def fill_used_later_X(self, tier, duration, used_clauses="used_clauses",
table="used_later"):
min_del_distance = duration
if min_del_distance > 2*1000*1000:
min_del_distance = 100*1000
mult = 1.2
q_fill = """
insert into {table}_{tier}
(
`clauseID`,
`rdb0conflicts`,
`used_later`
)
SELECT
rdb0.clauseID
, rdb0.conflicts
, sum(ucl.weight* (({duration}*{mult}-(ucl.used_at-rdb0.conflicts)+0.001)/({duration}*{mult}+0.001)) ) as `used_later`
FROM
reduceDB as rdb0
left join {used_clauses} as ucl
-- reduceDB is always present, {used_clauses} may not be, hence left join
on (ucl.clauseID = rdb0.clauseID
and ucl.used_at > (rdb0.conflicts)
and ucl.used_at <= (rdb0.conflicts+{duration}))
join cl_last_in_solver
on cl_last_in_solver.clauseID = rdb0.clauseID
WHERE
rdb0.clauseID != 0
and cl_last_in_solver.conflicts >= (rdb0.conflicts + {min_del_distance})
group by rdb0.clauseID, rdb0.conflicts;"""
t = time.time()
q = q_fill.format(
tier=tier, used_clauses=used_clauses,
duration=duration,
table=table,
mult=mult,
min_del_distance=min_del_distance)
self.c.execute(q)
q_fix_null = "update {table}_{tier} set used_later = 0 where used_later is NULL".format(
tier=tier, table=table)
self.c.execute(q_fix_null)
q_num = "select count(*) from {table}_{tier}".format(tier=tier, table=table)
self.c.execute(q_num)
rows = self.c.fetchall()
for row in rows:
num = row[0]
if table == "used_later" and num == 0:
print("ERROR: number of rows in {table}_{tier} is 0!".format(tier=tier, table=table))
print("Query was: %s" % q)
exit(-1)
print("%s_%s filled T: %-3.2f s -- num rows: %d" %
(table, tier, time.time() - t, num))
def fill_used_later_X_perc_fit(self, tier, table):
print("Filling percentile_fit for {table}_{tier}".format(tier=tier, table=table))
q = """
update {table}_{tier}
set percentile_fit = (
select max({table}_percentiles.percentile)
from {table}_percentiles
where
{table}_percentiles.type_of_dat="{tier}"
and {table}_percentiles.percentile_descr="top_non_zero"
and {table}_percentiles.val >= {table}_{tier}.used_later);
"""
t = time.time()
self.c.execute(q.format(tier=tier, table=table))
print("used_later_%s percentile filled T: %-3.2f s" % (tier, time.time() - t))
def write_mit_header(f):
f.write("""/******************************************
Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
***********************************************/\n\n""")
def parse_configs(confs):
match = re.match(r"^([0-9]*)-([0-9]*)$", confs)
if not match:
print("ERROR: we cannot parse your config options: '%s'" % confs)
exit(-1)
conf_from = int(match.group(1))
conf_to = int(match.group(2))+1
if conf_to <= conf_from:
print("ERROR: Conf range is not increasing")
exit(-1)
print("Running configs:", range(conf_from, conf_to))
return conf_from, conf_to
def get_features(fname):
best_features = []
check_file_exists(fname)
with open(fname, "r") as f:
for l in f:
l = l.strip()
if len(l) == 0:
continue
if l[0] == "#":
continue
best_features.append(l)
return best_features
def helper_divide(dividend, divisor, df, features, verb, name=None):
"""
to be used like:
import functools
divide = functools.partial(helper.divide, df=df, features=features, verb=options.verbose)
"""
# dividend feature not present
#if dividend not in features:
#return None
# divisorfeature not present
#if divisor not in features:
#return None
# divide
if verb:
print("Dividing. dividend: '%s' divisor: '%s' " % (dividend, divisor))
if name is None:
name = "(%s/%s)" % (dividend, divisor)
df[name] = df[dividend].div(df[divisor])
return name
def helper_larger_than(lhs, rhs, df, features, verb):
"""
to be used like:
import functools
larger_than = functools.partial(helper.larger_than, df=df, features=features, verb=options.verbose)
"""
# divide
if verb:
print("Calulating '%s' >: '%s' " % (lhs, rhs))
name = "(" + lhs + ">" + rhs + ")"
df[name] = (df[lhs] > df[rhs]).astype(int)
return name
def helper_add(toadd, df, features, verb):
"""
to be used like:
import functools
larger_than = functools.partial(helper.larger_than, df=df, features=features, verb=options.verbose)
"""
# add
if verb:
print("Calulating: the feature addition of: %s", toadd)
name = "("
for i in range(1, len(toadd)):
name = toadd[i]
if i < len(toadd)-1:
name+="+"
name += ")"
df[name] = df[toadd[0]]
for i in range(1, len(toadd)):
df[name] += df[toadd[i]]
return name
def dangerous(conn):
conn.execute("PRAGMA journal_mode = MEMORY")
conn.execute("PRAGMA synchronous = OFF")
def drop_idxs(conn):
q = """
SELECT name FROM sqlite_master WHERE type == 'index'
"""
conn.execute(q)
rows = conn.fetchall()
queries = ""
for row in rows:
#print("Will delete index:", row[0])
queries += "drop index if exists `%s`;\n" % row[0]
t = time.time()
for q in queries.split("\n"):
conn.execute(q)
print("Removed indexes: T: %-3.2f s"% (time.time() - t))
def get_columns(tablename, verbose, conn):
q = "pragma table_info(%s);" % tablename
conn.execute(q)
rows = conn.fetchall()
columns = []
for row in rows:
if verbose:
print("Using column in table {tablename}: {col}".format(
tablename=tablename, col=row[1]))
columns.append(row[1])
return columns
def query_fragment(tablename, not_cols, short_name, verbose, conn):
cols = get_columns(tablename, verbose, conn)
filtered_cols = list(set(cols).difference(not_cols))
ret = ""
for col in filtered_cols:
ret += ", {short_name}.`{col}` as `{short_name}.{col}`\n".format(
col=col, short_name=short_name)
if verbose:
print("query for short name {short_name}: {ret}".format(
short_name=short_name, ret=ret))
return ret
def not_inside(not_these, inside_here):
for not_this in not_these:
if not_this in inside_here:
return False
return True
# to check for too large or NaN values:
def check_too_large_or_nan_values(df, features=None):
print("Checking for too large or NaN values...")
if features is None:
features = df.columns.values.flatten().tolist()
index = 0
for index, row in df[features].iterrows():
print("-------------")
print("At row index: ", index)
for val, name in zip(row, features):
print("Name: '%s', val: %s" % (name, val))
if type(val) == str:
continue
if math.isnan(val) or not np.isfinite(val) or val > np.finfo(np.float32).max:
print("issue with feature '%s' Value: '%s' Type: '%s" % (
name, val, type(val)))
index += 1
print("Checking finished.")
def print_confusion_matrix(cm,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print(title)
if mlflow_avail:
mlflow.log_metric(title, cm[0][0])
np.set_printoptions(precision=2)
print(cm)
def calc_min_split_point(df, min_samples_split):
split_point = int(float(df.shape[0])*min_samples_split)
if split_point < 10:
split_point = 10
print("Minimum split point: ", split_point)
return split_point
def error_format(error):
if error is None:
return "XXX"
else:
return "{0:<2.2E}".format(error)
def calc_regression_error(data, features, to_predict, clf, toprint,
average="binary", highlight=False):
X_data = data[features]
y_data = data[to_predict]
print("Number of elements:", X_data.shape)
if data.shape[0] <= 1:
print("Cannot calculate regression error, too few elements")
return None
y_pred = clf.predict(X_data)
main_error = sklearn.metrics.mean_squared_error(y_data, y_pred)
print("Mean squared error is: %9s" % error_format(main_error))
median_absolute_error = sklearn.metrics.median_absolute_error(y_data, y_pred)
print("Median abs error is : %9s" % error_format(median_absolute_error))
# use distrib
for start,end in [(0,10), (1,10), (10, 100), (100, 1000), (1000,10000), (10000, 1000000)]:
x = "--> Strata %6d <= %21s < %8d " % (start, to_predict, end)
myfilt = data[(data[to_predict] >= start) & (data[to_predict] < end)]
X_data = myfilt[features]
y_data = myfilt[to_predict]
y = " -- elems: {:12}".format(str(X_data.shape))
if myfilt.shape[0] <= 1:
msqe = None
med_abs_err = None
mean_err = None
else:
y_pred = clf.predict(X_data)
msqe = sklearn.metrics.mean_squared_error(y_data, y_pred)
med_abs_err = sklearn.metrics.median_absolute_error(y_data, y_pred)
mean_err = (y_data - y_pred).sum()/len(y_data)
print("{} {} msqe: {:9s} mabse: {:9s} abs: {:9s}".format(
x, y, error_format(msqe), error_format(med_abs_err), error_format(mean_err)))
# glue distrib
for start,end in [(0,3), (3,8), (8, 15), (15, 25), (25,50), (50, 100), (100, 1000000)]:
x = "--> Strata %6d <= %21s < %8d " % (start, "rdb0.glue", end)
myfilt = data[(data["rdb0.glue"] >= start) & (data["rdb0.glue"] < end)]
X_data = myfilt[features]
y_data = myfilt[to_predict]
y = " -- elems: {:12}".format(str(X_data.shape))
if myfilt.shape[0] <= 1:
msqe = None
med_abs_err = None
mean_err = None
else:
y_pred = clf.predict(X_data)
msqe = sklearn.metrics.mean_squared_error(y_data, y_pred)
med_abs_err = sklearn.metrics.median_absolute_error(y_data, y_pred)
mean_err = (y_data - y_pred).sum()/len(y_data)
print("{} {} msqe: {:9s} mabse: {:9s} abs: {:9s}".format(
x, y, error_format(msqe), error_format(med_abs_err), error_format(mean_err)))
return main_error
def conf_matrixes(data, features, to_predict, clf, toprint,
average="binary", highlight=False):
# get data
X_data = data[features]
y_data = data[to_predict]
print("Number of elements:", X_data.shape)
if data.shape[0] <= 1:
print("Cannot calculate confusion matrix, too few elements")
return None, None, None, None
# Preform prediction
def f(x):
if x > 0.5:
return 1
else:
return 0
y_pred = clf.predict(X_data)
#print("type(y_pred[0]): ", type(y_pred[0]))
if type(y_pred[0]) == np.float32:
y_pred = np.array([f(x) for x in y_pred])
# calc acc, precision, recall
accuracy = sklearn.metrics.accuracy_score(
y_data, y_pred)
precision = sklearn.metrics.precision_score(
y_data, y_pred, pos_label=1, average=average)
recall = sklearn.metrics.recall_score(
y_data, y_pred, pos_label=1, average=average)
# ROC AUC
predsi = np.array(y_pred)
y_testi = pd.DataFrame(y_data)["x.class"].squeeze()
try:
roc_auc = sklearn.metrics.roc_auc_score(y_testi, predsi)
except:
print("NOTE: ROC AUC is set to 0 because of completely one-sided OK/BAD")
roc_auc = 0
# record to mlflow
if mlflow_avail:
mlflow.log_metric(toprint + " -- accuracy", accuracy)
mlflow.log_metric(toprint + " -- precision", precision)
mlflow.log_metric(toprint + " -- recall", recall)
mlflow.log_metric(toprint + " -- roc_auc", roc_auc)
color = "white"
bckgrnd = "on_grey"
if highlight:
color="green"
bckgrnd = "on_grey"
txt = "%s prec : %-3.4f recall: %-3.4f accuracy: %-3.4f roc_auc: %-3.4f"
vals = (toprint, precision, recall, accuracy, roc_auc)
if termcolor_avail:
cprint(txt % vals , color, bckgrnd)
else:
cprint(txt % vals)
# Plot confusion matrix
cnf_matrix = sklearn.metrics.confusion_matrix(
y_true=y_data, y_pred=y_pred)
print_confusion_matrix(
cnf_matrix,
title='Confusion matrix without normalization -- %s' % toprint)
print_confusion_matrix(
cnf_matrix, normalize=True,
title='Normalized confusion matrix -- %s' % toprint)
return roc_auc
def check_file_exists(fname):
try:
f = open(fname)
except IOError:
print("File '%s' not accessible" % fname)
exit(-1)
finally:
f.close()
def output_to_classical_dot(clf, features, fname):
feat_tmp = []
for f in features:
x = str(f)
x = x.replace("rdb0.", "")
x = x.replace("cl.", "")
x = x.replace("HistLT.", "History_Long_Term")
x = x.replace("rdb0_common.", "all_learnts")
feat_tmp.append(x)
sklearn.tree.export_graphviz(clf, out_file=fname,
feature_names=feat_tmp,
#class_names=clf.classes_,
filled=True, rounded=True,
special_characters=True,
proportion=True)
print("Run dot:")
print("dot -Tpng {fname} -o {fname}.png".format(fname=fname))
print("gwenview {fname}.png".format(fname=fname))
def print_feature_ranking(clf, X_train, top_num_features, features, plot=False):
best_features = []
importances = clf.feature_importances_
std = np.std(
[tree.feature_importances_ for tree in clf.estimators_], axis=0)
indices = np.argsort(importances)[::-1]
indices = indices[:top_num_features]
myrange = min(X_train.shape[1], top_num_features)
# Print the feature ranking
print("Feature ranking:")
for f in range(myrange):
print("%-3d %-55s -- %8.4f" %
(f + 1, features[indices[f]], importances[indices[f]]))
best_features.append(features[indices[f]])
# Plot the feature importances of the clf
if plot:
plot_feature_importances(importances, indices, myrange, std, features)
return best_features
def plot_feature_importances(importances, indices, myrange, std, features):
plt.figure()
plt.title("Feature importances")
plt.bar(range(myrange), importances[indices],
color="r", align="center",
yerr=std[indices])
plt.xticks(range(myrange), [features[x]
for x in indices], rotation=45)
plt.xlim([-1, myrange])
def add_features_from_fname(df, features_fname, verbose=False):
print("Adding features...")
if not os.path.exists(features_fname):
print("ERROR: Feature file '%s' does not exist" % features_fname)
exit(-1)
cldata_add_minimum_computed_features(df, verbose)
best_features = get_features(features_fname)
for feat in best_features:
toeval = ccg.to_source(ast.parse(feat))
print("Adding feature %s as eval %s" % (feat, toeval))
df[feat] = eval(toeval)
def add_features_from_list(df, best_features, verbose=False):
print("Adding features...")
cldata_add_minimum_computed_features(df, verbose)
for feat in best_features:
toeval = ccg.to_source(ast.parse(feat))
print("Adding feature %s as eval %s" % (feat, toeval))
df[feat] = eval(toeval)
def make_missing_into_nan(df):
print("Making None into NaN...")
def make_none_into_nan(x):
if x is None:
return np.nan
else:
return x
for col in list(df):
if type(None) in df[col].apply(type).unique():
df[col] = df[col].apply(make_none_into_nan)
print("Done.")
def cldata_add_minimum_computed_features(df, verbose):
divide = functools.partial(helper_divide, df=df, features=list(df), verb=verbose)
divide("rdb0.act_ranking", "rdb0_common.tot_cls_in_db", name="rdb0.act_ranking_rel")
divide("rdb0.prop_ranking", "rdb0_common.tot_cls_in_db", name="rdb0.prop_ranking_rel")
divide("rdb0.uip1_ranking", "rdb0_common.tot_cls_in_db", name="rdb0.uip1_ranking_rel")
divide("rdb0.sum_uip1_per_time_ranking", "rdb0_common.tot_cls_in_db",
name="rdb0.sum_uip1_per_time_ranking_rel")
divide("rdb0.sum_props_per_time_ranking", "rdb0_common.tot_cls_in_db",
name="rdb0.sum_props_per_time_ranking_rel")
df["rdb0_common.tot_irred_cls"] = df["rdb0_common.num_bin_irred_cls"] + df["rdb0_common.num_long_irred_cls"]
divide("rdb0_common.tot_irred_cls", "rdb0_common.num_vars")
divide("rdb0_common.num_long_irred_cls", "rdb0_common.num_long_irred_cls_lits")
divide("rdb0_common.num_long_irred_cls_lits", "rdb0_common.num_vars")
divide("rdb0_common.num_long_irred_cls", "rdb0_common.num_vars")
def cldata_add_computed_features(df, verbose):
print("Adding computed features...")
cldata_add_minimum_computed_features(df, verbose)
del df["cl.conflicts"]
del df["cl.restartID"]
del df["rdb0.introduced_at_conflict"]
divide = functools.partial(helper_divide, df=df, features=list(df), verb=verbose)
larger_than = functools.partial(helper_larger_than, df=df, features=list(df), verb=verbose)
add = functools.partial(helper_add, df=df, features=list(df), verb=verbose)
# ************
# TODO decision level and branch depth are the same, right???
# ************
print("size/glue/trail rel...")
divide("cl.trail_depth_level", "cl.trailDepthHistLT_avg")
divide("cl.trail_depth_level", "cl.trailDepthHist_avg")
divide("cl.num_total_lits_antecedents", "cl.num_antecedents")
del df["rdb0.uip1_ranking"]
del df["rdb0.prop_ranking"]
del df["rdb0.act_ranking"]
del df["rdb0.sum_uip1_per_time_ranking"]
del df["rdb0.sum_props_per_time_ranking"]
del df["rdb0_common.tot_cls_in_db"]
# divide by avg and median
divide("rdb0.uip1_used", "rdb0_common.avg_uip1_used")
divide("rdb0.props_made", "rdb0_common.avg_props")
divide("rdb0.glue", "rdb0_common.avg_glue")
divide("rdb0.uip1_used", "rdb0_common.median_uip1_used")
divide("rdb0.props_made", "rdb0_common.median_props")
time_in_solver = "cl.time_inside_solver"
sum_props_per_time = divide("rdb0.sum_props_made", time_in_solver)
sum_uip1_per_time = divide("rdb0.sum_uip1_used", time_in_solver)
divide(sum_props_per_time, "rdb0_common.median_sum_uip1_per_time")
divide(sum_uip1_per_time, "rdb0_common.median_sum_props_per_time")
divide(sum_props_per_time, "rdb0_common.avg_sum_uip1_per_time")
divide(sum_uip1_per_time, "rdb0_common.avg_sum_props_per_time")
#del df[time_in_solver]
divisors = [
"cl.conflSizeHistlt_avg"
, "cl.glueHistLT_avg"
, "rdb0.glue"
, "rdb0.size"
# , "cl.orig_connects_num_communities"
# , "rdb0.connects_num_communities"
, "cl.orig_glue"
, "cl.glue_before_minim"
, "cl.glueHist_avg"
, "cl.glueHist_longterm_avg"
# , "cl.decision_level_hist"
, "cl.numResolutionsHistLT_avg"
, "cl.trailDepthHistLT_avg"
, "cl.trailDepthHist_avg"
, "cl.branchDepthHistQueue_avg"
, "cl.overlapHistLT_avg"
, "(cl.num_total_lits_antecedents/cl.num_antecedents)"
, "cl.num_antecedents"
, "rdb0.act_ranking_rel"
, "rdb0.prop_ranking_rel"
, "rdb0.uip1_ranking_rel"
, "rdb0.sum_uip1_per_time_ranking_rel"
, "rdb0.sum_props_per_time_ranking_rel"
, "cl.time_inside_solver"
# , "cl.num_overlap_literals"
]
# discounted stuff
divide("rdb0.discounted_uip1_used", "rdb0_common.avg_uip1_used")
divide("rdb0.discounted_props_made", "rdb0_common.avg_props")
divide("rdb0.discounted_uip1_used", "rdb0_common.median_uip1_used")
divide("rdb0.discounted_props_made", "rdb0_common.median_props")
#==
divide("rdb0.discounted_uip1_used2", "rdb0_common.avg_uip1_used")
divide("rdb0.discounted_props_made2", "rdb0_common.avg_props")
divide("rdb0.discounted_uip1_used2", "rdb0_common.median_uip1_used")
divide("rdb0.discounted_props_made2", "rdb0_common.median_props")
sum_uip1_per_time = divide("rdb0.sum_uip1_used", "cl.time_inside_solver")
sum_props_per_time = divide("rdb0.sum_props_made", "cl.time_inside_solver")
antec_rel = divide("cl.num_total_lits_antecedents", "cl.antec_data_sum_sizeHistLT_avg")
divisors.append(sum_uip1_per_time)
divisors.append(sum_props_per_time)
divisors.append("rdb0.discounted_uip1_used")
divisors.append("rdb0.discounted_props_made")
divisors.append(antec_rel)
orig_cols = list(df)
# Thanks to Chai Kian Ming Adam for the idea of using LOG instead of SQRT
# add LOG
if False:
toadd = []
for divisor in divisors:
x = "log2("+divisor+")"
df[x] = df[divisor].apply(np.log2)
toadd.append(x)
divisors.extend(toadd)
# relative data
cols = list(df)
for col in cols:
if ("rdb" in col or "cl." in col) and "restart_type" not in col and "tot_cls_in" not in col:
for divisor in divisors:
divide(divisor, col)
divide(col, divisor)
# smaller/larger than
print("smaller-or-greater comparisons...")
if False:
for col in cols:
if "avg" in col or "median" in col:
for divisor in divisors:
larger_than(col, divisor)
# smaller-or-greater comparisons
#if not short:
#larger_than("cl.antec_data_sum_sizeHistLT_avg", "cl.num_total_lits_antecedents")
#larger_than("cl.overlapHistLT_avg", "cl.num_overlap_literals")
# print("flatten/list...")
#old = set(df.columns.values.flatten().tolist())
#df = df.dropna(how="all")
#new = set(df.columns.values.flatten().tolist())
#if len(old - new) > 0:
#print("ERROR: a NaN number turned up")
#print("columns: ", (old - new))
#assert(False)
#exit(-1)
def print_datatypes(df):
pd.set_option('display.max_rows', len(df.dtypes))
print(df.dtypes)
pd.reset_option('display.max_rows')
|