1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.
from __future__ import print_function
import sqlite3
import optparse
import time
import os.path
import helper
class QueryDatRem(helper.QueryHelper):
def __init__(self, dbfname):
super(QueryDatRem, self).__init__(dbfname)
def create_percentiles_table(self):
for table in ["used_later", "used_later_anc"]:
# drop table
q_drop = """
DROP TABLE IF EXISTS `{table}_percentiles`;
"""
self.c.execute(q_drop.format(table=table))
# Create percentiles table
q_create = """
create table `{table}_percentiles` (
`type_of_dat` string NOT NULL,
`percentile_descr` string NOT NULL,
`percentile` float DEFAULT NULL,
`val` float NOT NULL
);"""
self.c.execute(q_create.format(table=table))
idxs = """
create index `{table}_percentiles_idx3` on `{table}_percentiles` (`type_of_dat`, `percentile_descr`, `percentile`, `val`);
create index `{table}_percentiles_idx2` on `{table}_percentiles` (`type_of_dat`, `percentile_descr`, `val`);"""
for q in idxs.split("\n"):
self.c.execute(q.format(table=table))
# "tier" here is "short", "long", or "forever"
def get_all_percentile_X(self, tier):
t = time.time()
for table in ["used_later", "used_later_anc"]:
print("Calculating percentiles now for table {table} and tier {tier} ...".format(
tier=tier, table=table))
q2 = """
insert into {table}_percentiles (type_of_dat, percentile_descr, percentile, val)
{q}
"""
q = "select '{tier}', 'avg', NULL, avg(used_later) from {table}_{tier};".format(
tier=tier, table=table)
self.c.execute(q2.format(tier=tier, table=table, q=q))
q = """
SELECT
'{tier}', 'top_non_zero', {perc}, used_later
FROM {table}_{tier}
WHERE used_later>0
ORDER BY used_later ASC
LIMIT 1
OFFSET round((SELECT
COUNT(*)
FROM {table}_{tier}
WHERE used_later>0) * ((100-{perc}) / 100.0)) - 1;
"""
for perc in list(range(0,30,1))+list(range(30,100, 5)):
myq = q.format(tier=tier, table=table, perc=perc)
self.c.execute(q2.format(tier=tier, table=table, q=myq))
# the 100% perecentile is not 0 (remember, this is "non-zero"), but let's cheat and add it in
self.c.execute(q2.format(
tier=tier, table=table, q="select '{tier}', 'top_non_zero', 100.0, 0.0;".format(
tier=tier, table=table)))
q = """
SELECT
'{tier}', 'top_also_zero', {perc}, used_later
FROM {table}_{tier}
ORDER BY used_later ASC
LIMIT 1
OFFSET round((SELECT
COUNT(*)
FROM {table}_{tier}) * ((100.0-{perc}) / 100.0)) - 1;
"""
for perc in range(0,100, 10):
myq = q.format(tier=tier, table=table, perc=perc)
self.c.execute(q2.format(tier=tier, table=table, q=myq))
self.c.execute(
q2.format(tier=tier, table=table,
q="select '{tier}', 'top_also_zero', 100.0, 0.0;".format(tier=tier, table=table)))
print("Calculated percentiles/averages, T:", time.time()-t)
def print_percentiles(self):
q_check = "select * from used_later_percentiles"
cur = self.conn.cursor()
cur.execute(q_check)
rows = cur.fetchall()
print("Percentiles/average for used_later_percentiles:")
for row in rows:
print(" -> %s %s -- %s : %s" %(row[0], row[1], row[2], row[3]))
def create_indexes1(self):
print("Recreating indexes...")
t = time.time()
queries = """
create index `idxclid31` on `clause_stats` (`clauseID`);
create index `idxclid32` on `reduceDB` (`clauseID`);
create index `idxclid33` on `sum_cl_use` (`clauseID`);
create index `idxclid34` on `used_clauses` (`clauseID`);
create index `idxclid44` on `restart_dat_for_cl` (`clauseID`);
create index `idxclid35` on `var_data_fintime` (`var`, `sumConflicts_at_picktime`);
create index `idxclid36` on `var_data_picktime` (`var`, `sumConflicts_at_picktime`);
create index `idxclid37` on `dec_var_clid` (`var`, `sumConflicts_at_picktime`);
create index `idxclid40` on `restart_dat_for_var` (`conflicts`);
"""
for q in queries.split("\n"):
self.c.execute(q)
print("Created indexes needed T: %-3.2f s"% (time.time() - t))
def recreate_used_ID_table(self):
q = """
DROP TABLE IF EXISTS `used_cl_ids`;
"""
self.c.execute(q)
q = """
CREATE TABLE `used_cl_ids` (
`clauseID` int(20) NOT NULL
);
"""
self.c.execute(q)
q = """
create index `idxclid30` on `used_cl_ids` (`clauseID`);
"""
self.c.execute(q)
def remove_too_many_vardata(self):
t = time.time()
q = """
select count()
from var_data_picktime
"""
ret = self.c.execute(q)
rows = self.c.fetchall()
assert len(rows) == 1
num_vardata = rows[0][0]
print("Current number of elements in var_data: %d" % num_vardata)
if num_vardata < options.goal_vardata:
print("Not too many in var_data, skipping removal.")
return
q = """
DROP TABLE IF EXISTS `used_vardat`;
"""
self.c.execute(q)
q = """
CREATE TABLE `used_vardat` (
`var` bigint(20) NOT NULL
, `sumConflicts_at_picktime` bigint(20) NOT NULL
);
"""
self.c.execute(q)
q = """
create index `idxclidxx` on `used_vardat`
(`var`, `sumConflicts_at_picktime`);
"""
self.c.execute(q)
q = """
insert into `used_vardat`
SELECT
var, sumConflicts_at_picktime
FROM var_data_picktime
order by random()
limit {limit}
""".format(limit=options.goal_vardata)
self.c.execute(q)
print("Added {limit} to `used_vardat`".format(limit=options.goal_vardata))
print("--> T: %-3.2f s"% (time.time() - t))
t = time.time()
del_from = ["var_data_picktime", "var_data_fintime", "dec_var_clid"]
for table in del_from:
q = """
DROP TABLE IF EXISTS `myrows`;
"""
self.c.execute(q)
q = """
CREATE TABLE `myrows` (
`myrowid` bigint(20) NOT NULL
);
"""
self.c.execute(q)
q = """
INSERT INTO `myrows`
SELECT `rowid`
FROM `{table}` WHERE (`var`, `sumConflicts_at_picktime`)
in (SELECT `var`, `sumConflicts_at_picktime` from `used_vardat`);
"""
self.c.execute(q.format(table=table))
q = """
create index `myidx111` on `myrows` (`myrowid`);
"""
q = """
DELETE FROM `{table}` WHERE (rowid) NOT IN
(SELECT `myrowid` from `myrows` );"""
self.c.execute(q.format(table=table))
print("Deleted unused data from %s" % table)
# cleanup
q = """
DROP TABLE IF EXISTS `myrows`;
"""
self.c.execute(q)
# sample restart_dat_for_var
q = """
DELETE FROM restart_dat_for_var WHERE `conflicts` NOT IN
(SELECT `sumConflicts_at_picktime` from `used_vardat` group by sumConflicts_at_picktime);"""
self.c.execute(q)
print("Deleted unused data from restart_dat_for_var")
# cleanup
q = """
DROP TABLE IF EXISTS `used_vardat`;
"""
self.c.execute(q)
print("Cleaned up var_data_x & restart_dat_for_var tables T: %-3.2f s"
% (time.time() - t))
def insert_into_used_cls_ids_from_clstats(self, min_used, limit, table):
min_used = int(min_used)
t = time.time()
val = int()
q = """
insert into used_cl_ids
select
clauseID from {table}
where
num_used >= {min_used}
order by random() limit {limit}
""".format(
min_used=min_used,
limit=int(limit),
table=table)
self.c.execute(q)
print("Added num_used >= %d from sum_cl_use to used_cls_ids T: %-3.2f s"
% (min_used, time.time() - t))
# inserts ratio that's slanted towards >=1 use
def fill_used_cl_ids_table(self, fair, limit):
t = time.time()
for table in ["sum_cl_use"]:
if not fair:
self.insert_into_used_cls_ids_from_clstats(min_used=100000, limit=limit/20, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=50000, limit=limit/10, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=10000, limit=limit/10, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=1000, limit=limit/10, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=100, limit=limit/10, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=30, limit=limit/5, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=20, limit=limit/4, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=5, limit=limit/3, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=1, limit=limit/2, table=table)
self.insert_into_used_cls_ids_from_clstats(min_used=0, limit=limit/2, table=table)
q = """
select count()
from used_cl_ids, sum_cl_use
where
used_cl_ids.clauseID = sum_cl_use.clauseID
and sum_cl_use.num_used > 0
"""
ret = self.c.execute(q)
rows = self.c.fetchall()
assert len(rows) == 1
good_ids = rows[0][0]
q = """
select count()
from used_cl_ids, sum_cl_use
where
used_cl_ids.clauseID = sum_cl_use.clauseID
and sum_cl_use.num_used = 0
"""
ret = self.c.execute(q)
rows = self.c.fetchall()
assert len(rows) == 1
bad_ids = rows[0][0]
print("IDs in used_cl_ids that are 'good' (sum_cl_use.num_used > 0) : %d" % good_ids)
print("IDs in used_cl_ids that are 'bad' (sum_cl_use.num_used = 0) : %d" % bad_ids)
print(" T: %-3.2f s" % (time.time() - t))
def print_idxs(self):
q = """
SELECT * FROM sqlite_master WHERE type == 'index'
"""
self.c.execute(q)
rows = self.c.fetchall()
queries = ""
if options.verbose:
print("Using indexes: ")
for row in rows:
print("-> index:", row)
def create_used_clauses_red(self):
t = time.time()
q = """
CREATE TABLE used_clauses_red AS
SELECT * FROM used_clauses WHERE clauseID IN (SELECT clauseID from used_cl_ids );
"""
self.c.execute(q)
print("Filtered into used_clauses_red T: %-3.2f s" % (time.time() - t))
def drop_used_clauses_red(self):
q = """
drop TABLE if exists used_clauses_red;
"""
self.c.execute(q)
def filter_tables_of_ids(self):
queries = """
drop index if exists idxclid34;
drop index if exists idxclid32;
"""
for q in queries.split("\n"):
self.c.execute(q)
self.print_idxs()
tables = ["clause_stats", "reduceDB", "sum_cl_use", "used_clauses_anc",
"used_clauses", "restart_dat_for_cl", "cl_last_in_solver"]
q = """
DELETE FROM {table} WHERE clauseID NOT IN
(SELECT clauseID from used_cl_ids );"""
for table in tables:
t = time.time()
self.c.execute(q.format(table=table))
print("Filtered table '%s' T: %-3.2f s" % (table, time.time() - t))
def print_sum_cl_use_distrib(self):
q = """
select c, num_used from (
select count(*) as c, num_used
from sum_cl_use
group by num_used) order by num_used
"""
self.c.execute(q)
rows = self.c.fetchall()
print("Distribution of clause uses:")
total = 0
zero_use = 0
for i in range(len(rows)):
cnt = int(rows[i][0])
numuse = int(rows[i][1])
if numuse == 0:
zero_use = cnt
total += cnt
i = 0
while i < len(rows):
cnt = int(rows[i][0])
numuse = int(rows[i][1])
this_cnt_tot = 0
this_numuse_tot = 0
for x in range(100000):
if i+x >= len(rows):
i+=x
break
this_cnt = int(rows[i+x][0])
this_numuse = int(rows[i+x][1])
this_cnt_tot += this_cnt
this_numuse_tot += this_numuse
if this_cnt_tot > 300:
i+=x
i+=1
break
print(" -> {cnt:-8d} of sum_cl_use: {numuse:-7d}-{this_numuse:-7d} -- {percent:-3.5f} ratio".format(
cnt=this_cnt_tot, numuse=numuse, this_numuse=this_numuse, percent=(this_cnt_tot/total)))
print("Total: %d of which zero_use: %d" % (total, zero_use))
# grain-53-80-0s0-seed-125-4-init-35.cnf.out actually has only 0.0098 use (i.e. 0.98%)
if zero_use == 0 or zero_use/total < 0.009:
print("ERROR: Zero use is very low, this is almost surely a bug!")
exit(-1)
def check_db_sanity(self):
print("Checking tables in DB...")
q = """
SELECT name FROM sqlite_master WHERE type == 'table'
"""
found_sum_cl_use = False
self.c.execute(q)
rows = self.c.fetchall()
for row in rows:
if row[0] == "sum_cl_use":
found_sum_cl_use = True
print("-> We have table: ", row[0])
if row[0] == "used_later_short" or row[0] == "used_later_long":
print("ERROR: 'gen_pandas.py' has been already ran on this DB")
print(" this will be a mess. We cannot run. ")
print(" Exiting.")
exit(-1)
if not found_sum_cl_use:
print("ERROR: Did not find sum_cl_use table. You probably didn't run")
print(" the 'clean_update_data.py' on this database")
print(" Exiting.")
exit(-1)
q = """
SELECT count() FROM sum_cl_use where num_used = 0
"""
self.c.execute(q)
rows = self.c.fetchall()
assert len(rows) == 1
num = int(rows[0][0])
print("Unused clauses in sum_cl_use: ", num)
if num == 0:
print("ERROR: You most likely didn't run 'clean_data.py' on this database")
print(" Exiting.")
exit(-1)
print("Tables seem OK")
def insert_into_only_keep_rdb(self, min_used_later, limit, tier, table):
limit = int(limit)
t = time.time()
q = """
insert into only_keep_rdb (id)
select
rdb0.rowid
FROM
reduceDB as rdb0,
{table}_{tier}
WHERE
{table}_{tier}.clauseID=rdb0.clauseID
and {table}_{tier}.rdb0conflicts=rdb0.conflicts
and {table}_{tier}.used_later >= {min_used_later}
order by random()
limit {limit}""".format(min_used_later=min_used_later, limit=limit,
tier=tier, table=table)
self.c.execute(q)
ret = self.c.execute("""select count() from only_keep_rdb""")
rows = self.c.fetchall()
rdb_rows = rows[0][0]
print("Insert only_keep_rdb where %s_%s >= %d T: %-3.2f s. Now size: %s" %
(table, tier, min_used_later, time.time() - t, rdb_rows))
def delete_too_many_rdb_rows(self):
t = time.time()
val = int(options.limit)
ret = self.c.execute("select count() from reduceDB")
rows = self.c.fetchall()
rdb_rows = rows[0][0]
print("Have %d lines of RDB, let's do non-fair selection" % (rdb_rows))
q = """
drop table if exists only_keep_rdb;
"""
self.c.execute(q)
t = time.time()
q = """create table only_keep_rdb (
id bigint(20) not null
);"""
self.c.execute(q)
print("Created only_keep_rdb T: %-3.2f s" % (time.time() - t))
mygoal = options.goal_rdb/13
table="used_later" # we could iterate with "used_later_anc", but not doing that
for tier in ["short", "long", "forever"]:
mygoal*=3 # this gives 8%, 23%, 70% distribution (total 100% if not rounded)
if not options.fair:
self.insert_into_only_keep_rdb(100000, mygoal/20, tier=tier, table=table)
self.insert_into_only_keep_rdb(10000, mygoal/20, tier=tier, table=table)
self.insert_into_only_keep_rdb(1000, mygoal/20, tier=tier, table=table)
self.insert_into_only_keep_rdb(100, mygoal/10, tier=tier, table=table)
self.insert_into_only_keep_rdb(20, mygoal/5, tier=tier, table=table)
self.insert_into_only_keep_rdb(10, mygoal/5, tier=tier, table=table)
self.insert_into_only_keep_rdb(5, mygoal/3, tier=tier, table=table)
self.insert_into_only_keep_rdb(1, mygoal/2, tier=tier, table=table)
self.insert_into_only_keep_rdb(0, mygoal, tier=tier, table=table)
t = time.time()
ret = self.c.execute("select count() from only_keep_rdb")
rows = self.c.fetchall()
rdb_rows = rows[0][0]
print("We now have %d lines only_keep_rdb" % (rdb_rows))
t = time.time()
q = """
drop index if exists `idxclid6-4`; -- the other index on reduceDB
create index `idx_bbb` on `only_keep_rdb` (`id`);
"""
for l in q.split('\n'):
self.c.execute(l)
print("only_keep_rdb indexes added T: %-3.2f s" % (time.time() - t))
q = """
delete from reduceDB
where reduceDB.rowid not in (select id from only_keep_rdb)
"""
self.c.execute(q)
print("Delete from reduceDB T: %-3.2f s" % (time.time() - t))
t = time.time()
val = int(options.limit)
ret = self.c.execute("select count() from reduceDB")
rows = self.c.fetchall()
rdb_rows = rows[0][0]
print("Finally have %d lines of RDB" % (rdb_rows))
def del_table_and_vacuum(self):
helper.drop_idxs(self.c)
t = time.time()
queries = """
DROP TABLE IF EXISTS `used_later`;
DROP TABLE IF EXISTS `only_keep_rdb`;
DROP TABLE IF EXISTS `used_cl_ids`;
"""
for q in queries.split("\n"):
self.c.execute(q)
print("Deleted tables T: %-3.2f s" % (time.time() - t))
q = """
vacuum;
"""
t = time.time()
lev = self.conn.isolation_level
self.conn.isolation_level = None
self.c.execute(q)
self.conn.isolation_level = lev
print("Vacuumed database T: %-3.2f s" % (time.time() - t))
if __name__ == "__main__":
usage = "usage: %prog [options] sqlitedb"
parser = optparse.OptionParser(usage=usage)
parser.add_option("--limit", default=20000, type=int,
dest="limit", help="Number of clauses to limit ourselves to")
parser.add_option("--goalrdb", default=200000, type=int,
dest="goal_rdb", help="Number of RDB neeeded")
parser.add_option("--goalvardata", default=50000, type=int,
dest="goal_vardata", help="Number of varData points neeeded")
parser.add_option("--verbose", "-v", action="store_true", default=False,
dest="verbose", help="Print more output")
parser.add_option("--noidx", action="store_true", default=False,
dest="noidx", help="Don't recreate indexes")
parser.add_option("--fair", "-f", action="store_true", default=False,
dest="fair", help="Fair sampling. NOT DEFAULT.")
# lengths of short/long
parser.add_option("--short", default=10*1000, type=int,
dest="short", help="Short duration. Default: %default")
parser.add_option("--long", default=30*1000, type=int,
dest="long", help="Long duration. Default: %default")
parser.add_option("--forever", default=120*1000, type=int,
dest="forever", help="Forever duration. Default: %default")
(options, args) = parser.parse_args()
if len(args) < 1:
print("ERROR: You must give the sqlite file!")
exit(-1)
if not options.fair:
print("NOTE: Sampling will NOT be fair.")
print(" This is because otherwise, DB will be huge")
print(" and we need lots of positive datapoints")
print(" most of which will be from clauses that are more used")
with QueryDatRem(args[0]) as q:
q.check_db_sanity()
helper.dangerous(q.c)
helper.drop_idxs(q.c)
q.create_indexes1()
q.remove_too_many_vardata()
# this is the SLOW way of doing it -- without pre-sampling it
if False:
print("This is good for verifying that the fast ones are close")
# slower percentiles
t = time.time()
with helper.QueryFill(args[0]) as q:
helper.dangerous(q.c)
q.delete_and_create_used_laters()
q.create_indexes(verbose=options.verbose)
for tier in ["short", "long", "forever"]:
q.fill_used_later_X(tier, getattr(options, tier))
with QueryDatRem(args[0]) as q:
helper.dangerous(q.c)
q.create_percentiles_table()
for tier in ["short", "long", "forever"]:
q.get_all_percentile_X(tier)
q.print_percentiles()
with helper.QueryFill(args[0]) as q:
q.delete_and_create_used_laters()
print("SLOWER percentiles:", time.time()-t)
# Percentile generation
t = time.time()
# first, we create "used_clauses_red" that contains a reduced
# list of clauseIDs we want to do this over. Here we sample FAIRLY!!!!
with QueryDatRem(args[0]) as q:
helper.dangerous(q.c)
q.recreate_used_ID_table()
q.fill_used_cl_ids_table(True, limit=4*options.limit) # notice the FAIR sampling!
q.drop_used_clauses_red()
q.create_used_clauses_red()
# now we generate the used_later data
with helper.QueryFill(args[0]) as q:
helper.dangerous(q.c)
q.delete_and_create_used_laters()
q.create_indexes(verbose=options.verbose, used_clauses="used_clauses_red")
for table in ["used_later", "used_later_anc"]:
for tier in ["short", "long", "forever"]:
q.fill_used_later_X(tier, duration=getattr(options, tier),
used_clauses="used_clauses_red",
table=table)
# now we calculate the distributions and save them
with QueryDatRem(args[0]) as q:
helper.dangerous(q.c)
q.create_percentiles_table()
for tier in ["short", "long", "forever"]:
q.get_all_percentile_X(tier)
q.print_percentiles()
q.drop_used_clauses_red()
with helper.QueryFill(args[0]) as q:
helper.drop_idxs(q.c)
q.delete_and_create_used_laters()
print("FASTER percentiles:", time.time()-t)
# Filtering for clauseIDs in tables:
# ["clause_stats", "reduceDB", "sum_cl_use",
# "used_clauses", "restart_dat_for_cl", "cl_last_in_solver"]
# here we sample NON-FAIRLY (options.fair) by default!
with QueryDatRem(args[0]) as q:
helper.dangerous(q.c)
q.recreate_used_ID_table()
q.fill_used_cl_ids_table(options.fair, limit=options.limit)
q.filter_tables_of_ids()
q.print_sum_cl_use_distrib()
print("-------------")
# RDB filtering
with helper.QueryFill(args[0]) as q:
helper.dangerous(q.c)
helper.drop_idxs(q.c)
q.delete_and_create_used_laters()
q.create_indexes(verbose=options.verbose)
# this is is needed for RDB row deletion below (since it's not fair)
table = "used_later" # we could also do used_later_anc (for RDB)
for tier in ["short", "long", "forever"]:
q.fill_used_later_X(tier=tier, table=table, duration=getattr(options, tier))
with QueryDatRem(args[0]) as q:
print("-------------")
q.delete_too_many_rdb_rows() # NOTE: NOT FAIR!!!
helper.drop_idxs(q.c)
q.del_table_and_vacuum()
|