File: vardata_gen_pandas.py

package info (click to toggle)
cryptominisat 5.11.4%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,432 kB
  • sloc: cpp: 55,148; ansic: 9,642; python: 8,899; sh: 1,336; php: 477; sql: 403; javascript: 173; xml: 34; makefile: 15
file content (304 lines) | stat: -rwxr-xr-x 10,007 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.

from __future__ import print_function
import sqlite3
import argparse
import time
import pickle
import re
import pandas as pd
import numpy as np
import os.path
import sys
import helper


def dump_df(df):
    # rename columns if we have to:
    cleanname = re.sub(r'\.cnf.gz.sqlite$', '', options.fname)
    cleanname = re.sub(r'\.db$', '', options.fname)
    cleanname = re.sub(r'\.sqlitedb$', '', options.fname)
    cleanname = "{cleanname}-vardata".format(
        cleanname=cleanname)
    dump_dataframe(df, cleanname)


def dump_dataframe(df, name):
    if options.dump_csv:
        fname = "%s.csv" % name
        print("Dumping CSV data to:", fname)
        df.to_csv(fname, index=False, columns=sorted(list(df)))

    fname = "%s.dat" % name
    print("Dumping pandas data to:", fname)
    with open(fname, "wb") as f:
        pickle.dump(df, f)


class QueryVar (helper.QueryHelper):
    def __init__(self, dbfname):
        super(QueryVar, self).__init__(dbfname)

    def create_indexes(self):
        helper.drop_idxs(self.c)

        print("Recreating indexes...")
        t = time.time()
        queries = """
        create index `idxclid8` on `var_data_picktime` ( `var`, `sumConflicts_at_picktime`, `latest_vardist_feature_calc`);
        create index `idxclid81` on `var_data_picktime` ( `var`, `sumConflicts_at_picktime`);
        create index `idxclid82` on `var_dist` ( `var`, `latest_vardist_feature_calc`);
        create index `idxclid9` on `var_data_fintime` ( `var`, `sumConflicts_at_picktime`);

        create index `idxclid10` on `dec_var_clid` ( `var`, `sumConflicts_at_picktime`, `clauseID`);

        create index `idxclid-s2` on `restart_dat_for_var` (`conflicts`, `latest_satzilla_feature_calc`, `branch_strategy`);
        create index `idxclid-s4` on `satzilla_features` (`latest_satzilla_feature_calc`);

        create index `idxclid-s1` on `sum_cl_use` ( `clauseID`, `num_used`);
        """

        for l in queries.split('\n'):
            t2 = time.time()

            if options.verbose:
                print("Creating/dropping index: ", l)
            self.c.execute(l)
            if options.verbose:
                print("Index dropping&creation T: %-3.2f s" %
                      (time.time() - t2))

        print("indexes dropped&created T: %-3.2f s" % (time.time() - t))

    def fill_var_data_use(self):
        print("Filling var data use...")

        t = time.time()
        q = "delete from `var_data_use`;"
        self.c.execute(q)
        print("var_data_use cleared T: %-3.2f s" % (time.time() - t))

        t = time.time()
        q = """
        insert into var_data_use

        (`var`
        , `sumConflicts_at_picktime`

        , `cls_marked`
        , `useful_clauses_used`)

        select
        dvclid.var
        , dvclid.sumConflicts_at_picktime

        -- measures for good
        , count(cls.num_used) as cls_marked
        , sum(cls.num_used) as useful_clauses_used

        FROM dec_var_clid as dvclid join sum_cl_use as cls
        on cls.clauseID = dvclid.clauseID

        -- avoid division by zero below

        group by dvclid.var, dvclid.sumConflicts_at_picktime
        ;
        """
        if options.verbose:
            print("query:", q)
        self.c.execute(q)

        print("var_data_use filled T: %-3.2f s" % (time.time() - t))

        t = time.time()
        q = """
        UPDATE var_data_use SET useful_clauses_used = 0
        WHERE useful_clauses_used IS NULL
        """
        self.c.execute(q)

        print("var_data_use updated T: %-3.2f s" % (time.time() - t))

    def create_vardata_df(self, min_val, max_val, branch_str = None):
        not_cols = [
            "clid_start_incl"
            , "clid_end_notincl"
            , "decided_pos"
            , "propagated_pos"
            , "restarts"
            , "var"
            , "cls_marked"]
        var_data_picktime = helper.query_fragment(
            "var_data_picktime", not_cols, "var_data_picktime", options.verbose, self.c)
        var_data_fintime = helper.query_fragment(
            "var_data_fintime", not_cols, "var_data_fintime", options.verbose, self.c)

        not_cols =[
            "var"
            , "latest_vardist_feature_calc"
            , "conflicts"
        ]
        var_dist = helper.query_fragment(
            "var_dist", not_cols, "var_dist", options.verbose, self.c)

        not_cols =[
            "simplifications"
            , "restarts"
            , "conflicts"
            , "latest_satzilla_feature_calc"
            , "runtime"
            , "propagations"
            , "decisions"
            , "flipped"
            , "replaced"
            , "eliminated"
            , "set"]
        rst = helper.query_fragment(
            "restart_dat_for_var", not_cols, "rst", options.verbose, self.c)

        not_cols =[
            ""]
        szfeat = helper.query_fragment(
            "satzilla_features", not_cols, "szfeat", options.verbose, self.c)

        not_cols =[
            "useful_clauses"
            , "sumConflicts_at_picktime"
            , "var"]
        var_data_use = helper.query_fragment(
            "var_data_use", not_cols, "var_data_use", options.verbose, self.c)

        not_cols =[
            "clauseID"
            , "first_confl_used"
            , "last_confl_used"]
        sum_cl_use = helper.query_fragment(
            "sum_cl_use", not_cols, "sum_cl_use", options.verbose, self.c)


        my_branch_str = ""
        if branch_str is not None:
            my_branch_str = "and rst.branch_strategy = {branch_str}".format(
                branch_str=branch_str)

        q = """
        select
        sum_cl_use.num_used as `x.num_used`
        {rst}
        {var_dist}
        {var_data_picktime}
        {var_data_fintime}
        {szfeat}
        {sum_cl_use}

        FROM
        var_data_picktime
        , var_data_fintime
        , sum_cl_use
        , dec_var_clid
        , var_dist
        , restart_dat_for_var as rst
        , satzilla_features as szfeat

        WHERE
        var_data_picktime.sumConflicts_at_picktime > 15000
        and sum_cl_use.clauseID = dec_var_clid.clauseID

        and var_data_picktime.var = dec_var_clid.var
        and var_data_picktime.sumConflicts_at_picktime = dec_var_clid.sumConflicts_at_picktime

        and var_data_fintime.var = dec_var_clid.var
        and var_data_fintime.sumConflicts_at_picktime = dec_var_clid.sumConflicts_at_picktime

        and var_dist.var = dec_var_clid.var
        and var_dist.latest_vardist_feature_calc = var_data_picktime.latest_vardist_feature_calc

        and rst.conflicts = var_data_picktime.sumConflicts_at_picktime
        and rst.latest_satzilla_feature_calc = szfeat.latest_satzilla_feature_calc

        and sum_cl_use.num_used >= {min_val}
        and sum_cl_use.num_used <= {max_val}

        {my_branch_str}

        order by random()
        limit {limit}
        """.format(
            rst=rst,
            var_data_use=var_data_use,
            var_data_picktime=var_data_picktime,
            var_data_fintime=var_data_fintime,
            var_dist=var_dist,
            sum_cl_use=sum_cl_use,
            szfeat=szfeat,
            limit=options.limit,
            min_val=min_val,
            max_val=max_val,
            my_branch_str=my_branch_str,
            min_cls_below=options.min_cls_below)

        df = pd.read_sql_query(q, self.conn)
        print("DF dimensions:", df.shape)
        return df


if __name__ == "__main__":
    usage = "usage: %(prog)s [options] file.sqlite"
    parser = argparse.ArgumentParser(usage=usage)

    parser.add_argument("fname", type=str, metavar='SQLITEFILE')
    parser.add_argument("--verbose", "-v", action="store_true",
                        default=False, dest="verbose", help="Print more output")
    parser.add_argument("--csv", action="store_true", default=False,
                        dest="dump_csv", help="Dump CSV (for weka)")
    parser.add_argument("--limit", type=int, default=10000,
                        dest="limit", help="How many data points")
    parser.add_argument("--minclsbelow", type=int, default=1,
                        dest="min_cls_below", help="Minimum number of clauses below to generate data point")
    parser.add_argument("--unbalanced", action="store_true",
                        default=False, dest="unbalanced", help="Get unbalanced output")

    options = parser.parse_args()

    if options.fname is None:
        print("ERROR: You must give exactly one file")
        exit(-1)

    np.random.seed(2097483)
    with QueryVar(options.fname) as q:
        q.create_indexes()
        q.fill_var_data_use()

        if not options.unbalanced:
            dfs = []
            for branch_str in range(4):
                print("Doing == 0 use:")
                dfs.append(q.create_vardata_df(0, 0, branch_str))
                print("Doing >0 use:")
                dfs.append(q.create_vardata_df(1, 200000, branch_str))
                print("Finished branch_str: ", branch_str)
            df_full = pd.concat(dfs, sort=False)
        else:
            df_full = q.create_vardata_df(0, 2000000000)

        print("Final DF dimensions:", df_full.shape)

        dump_df(df_full)