1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.
from __future__ import print_function
import sklearn.ensemble
import sklearn.tree
import sqlite3
import argparse
import time
import pickle
import re
import pandas as pd
import numpy as np
import os.path
import sys
import helper
import sklearn
import functools
ver = sklearn.__version__.split(".")
if int(ver[1]) < 20:
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
def add_computed_features(df):
print("Original number of features:", len(list(df)))
print("Adding computed features...")
cols = list(df)
divide = functools.partial(helper.divide, df=df, features=cols, verb=options.verbose)
if not options.picktime_only:
# create "during"
for col in cols:
if "_at_fintime" in col:
during_name = col.replace("_at_fintime", "_during")
at_picktime_name = col.replace("_at_fintime", "_at_picktime")
at_fintime_name = col
if options.verbose:
print("fintime name: ", at_fintime_name)
print("picktime name: ", at_picktime_name)
df[during_name] = df[at_fintime_name]-df[at_picktime_name]
# remove picktime & fintime, only use "during"
cols = list(df)
for c in cols:
if "at_picktime" in c or "at_fintime" in c:
del df[c]
else:
# remove everything to do with "clauses_below" and "at_fintime"
cols = list(df)
for c in cols:
if "var_data_fintime" in c:
del df[c]
if False:
# per-conflicts, per-decisions, per-lits
divisors = [
"var_data_picktime.sumConflicts_at_picktime"
, "var_data_picktime.sumClLBD_at_picktime"
, "var_data_picktime.sumClSize_at_picktime"
, "var_data_picktime.sumConflictClauseLits_at_picktime"
# neutral below
, "var_data_picktime.dec_depth"
# below during
, "var_data_picktime.inside_conflict_clause_antecedents_at_picktime"
, "var_data_picktime.sumDecisions_below_during"
, "var_data_picktime.sumPropagations_below_during"
, "var_data_picktime.sumConflicts_below_during"
, "var_data_picktime.sumAntecedents_below_during"
, "var_data_picktime.sumConflictClauseLits_below_during"
, "var_data_picktime.sumAntecedentsLits_below_during"
, "var_data_picktime.sumClSize_below_during"
, "var_data_picktime.sumClLBD_below_during"
]
cols = list(df)
for col in cols:
if "x." not in col and "var_data_use" not in col:
for divisor in divisors:
divide(col, divisor)
# divide var_dist by szfeat, all-by-all
if False:
for c in cols:
if "szfeat" in c:
for c2 in cols:
if "var_dist" in c2:
divide(c2, c)
# divide during by during, all-by-all
if True:
for c in cols:
if "during" in c:
for c2 in cols:
if "during" in c2:
divide(c2, c)
df["var_dist.num_irred_cls"] = df["var_dist.num_irred_long_cls"] + df["var_dist.num_irred_bin_cls"]
df["var_dist.num_red_cls"] = df["var_dist.num_red_long_cls"] + df["var_dist.num_red_bin_cls"]
for red in ["red", "irred"]:
divide("var_dist.{red}_num_times_in_bin_clause".format(red=red), "var_dist.num_{red}_bin_cls".format(red=red))
divide("var_dist.{red}_num_times_in_long_clause".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
divide("var_dist.{red}_satisfies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
divide("var_dist.{red}_tot_num_lit_of_bin_it_appears_in".format(red=red), "var_dist.num_{red}_bin_cls".format(red=red))
divide("var_dist.{red}_tot_num_lit_of_long_cls_it_appears_in".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
divide("var_dist.{red}_sum_var_act_of_cls".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
divide("var_dist.{red}_satisfies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
divide("var_dist.{red}_falsifies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
divide("var_dist.{red}_tot_num_lit_of_long_cls_it_appears_in".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
divide("var_dist.{red}_sum_var_act_of_cls".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
divide("var_dist.{red}_satisfies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
divide("var_dist.{red}_sum_var_act_of_cls".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
divide("var_dist.tot_act_long_red_cls", "var_dist.num_red_long_cls")
divide("var_data_picktime.inside_conflict_clause_antecedents_during_at_picktime",
"var_data_picktime.sumAntecedentsLits_at_picktime")
divide("var_data_picktime.sumAntecedentsLits_below_during",
"var_data_picktime.sumAntecedentsLits_at_picktime")
divide("var_data_picktime.inside_conflict_clause_during_at_picktime",
"var_data_picktime.sumConflicts_at_picktime")
divide("var_data_picktime.inside_conflict_clause_antecedents_at_picktime",
"var_data_picktime.sumAntecedentsLits_at_picktime")
divide("var_data_picktime.num_decided", "var_data_picktime.sumDecisions_at_picktime")
divide("var_data_picktime.num_decided_pos", "var_data_picktime.sumDecisions_at_picktime")
divide("var_data_picktime.num_decided", "var_data_picktime.num_decided_pos")
divide("var_data_picktime.num_propagated", "var_data_picktime.sumPropagations_at_picktime")
divide("var_data_picktime.num_propagated_pos", "var_data_picktime.sumPropagations_at_picktime")
divide("var_data_picktime.num_propagated", "var_data_picktime.num_propagated_pos")
for c in cols:
if "var_dist.num_" in c:
del df[c]
del df["var_dist.num_irred_cls"]
del df["var_dist.num_red_cls"]
# we divide these and then delete
xs = [
"var_dist.red_num_times_in_long_clause",
"var_data_picktime.inside_conflict_clause_at_picktime",
"var_data_picktime.sumClSize_at_picktime",
"var_data_picktime.sumClLBD_at_picktime",
"var_data_picktime.sumAntecedents_at_picktime",
"var_data_picktime.sumAntecedentsLits_at_picktime",
"var_data_picktime.sumConflictClauseLits_at_picktime",
"var_data_picktime.inside_conflict_clause_antecedents_at_picktime",
"var_data_picktime.inside_conflict_clause_antecedents_during_at_picktime",
"var_data_picktime.sumAntecedentsLits_below_during",
"var_data_picktime.inside_conflict_clause_glue_at_picktime",
"var_data_picktime.inside_conflict_clause_glue_during_at_picktime"
]
ys = [
"var_data_picktime.sumConflicts_at_picktime",
"var_data_picktime.num_decided",
"var_data_picktime.num_propagated"
]
for x in xs:
for y in ys:
divide(x, y)
del df[x]
todel = [
"var_data_picktime.latest_vardist_feature_calc",
"var_dist.red_falsifies_cl",
"var_dist.irred_falsifies_cl",
"var_dist.red_satisfies_cl",
"var_dist.irred_satisfies_cl",
"var_data_picktime.dec_depth",
"var_dist.red_num_times_in_bin_clause",
"var_dist.irred_sum_var_act_of_cls",
"var_dist.tot_act_long_red_cls",
"var_dist.red_tot_num_lit_of_long_cls_it_appears_in",
"var_dist.red_sum_var_act_of_cls",
#"rst.branch_strategy",
"var_data_picktime.num_decided",
"var_data_picktime.num_decided_pos",
"var_data_picktime.num_propagated",
"var_data_picktime.num_propagated_pos",
"var_data_picktime.sumPropagations_at_picktime",
"var_data_picktime.sumDecisions_at_picktime",
"var_data_picktime.inside_conflict_clause_during_at_picktime"
]
for d in todel:
del df[d]
for c in cols:
if "rst." in c and "strategy" not in c and "restart_type" not in c:
if c in list(df):
del df[c]
print("Done adding computed features. New number of features: ", len(list(df)))
def rem_useless_features(df):
col = list(df)
for c in col:
if "restart_type" in c or "szfeat" in c:
del df[c]
# remove hidden data
del df["sum_cl_use.num_used"]
pass
class Learner:
def __init__(self, df, funcname, fname, cluster_no):
self.df = df
self.func_name = funcname
self.fname = fname
self.cluster_no = cluster_no
def cut_into_chunks(self):
df["x.class"] = pd.qcut(
df["x.num_used"],
q=options.quantiles,
duplicates='drop',
labels=False)
df['x.class'] = df['x.class'].astype(str)
@staticmethod
def fix_feat_name(x):
if "during" in x or "clauses_below" in x:
x = x.replace("var_data_", "")
return x
def one_classifier(self, features, to_predict, final, write_code=False):
print("-> Number of features :", len(features))
print("-> Number of datapoints:", self.df.shape)
print("-> Predicting :", to_predict)
# get smaller part to work on
# also, copy it so we don't get warning about setting a slice of a DF
if options.only_pecr >= 0.98:
df = self.df.copy()
else:
_, df_tmp = train_test_split(self.df, test_size=options.only_pecr)
df = df_tmp.copy()
print("-> Number of datapoints after applying '--only':", df.shape)
if options.dump_csv:
fname = "mydump.csv"
print("Dumping CSV data to:", fname)
df.to_csv(fname, index=False, columns=sorted(list(df)))
if options.check_row_data:
helper.check_too_large_or_nan_values(df, features+["x.class"])
print("Checked, all good!")
train, test = train_test_split(df, test_size=0.33)
X_train = train[features]
y_train = train[to_predict]
t = time.time()
clf = None
if final:
split_point = helper.calc_min_split_point(
df, options.min_samples_split)
clf = sklearn.tree.DecisionTreeClassifier(
max_depth=options.tree_depth,
min_samples_split=split_point)
else:
clf = sklearn.ensemble.RandomForestClassifier(
n_estimators=1000,
max_features="sqrt")
del df
clf.fit(X_train, y_train)
print("Training finished. T: %-3.2f" % (time.time() - t))
if not final:
best_features = helper.print_feature_ranking(
clf, X_train,
top_num_features=options.top_num_features,
features=features,
plot=options.show)
else:
if options.dot is not None:
if not options.final_is_tree:
print("ERROR: You cannot use the DOT function on non-trees")
exit(-1)
helper.output_to_classical_dot(
clf, features,
fname=options.dot + "-" + self.func_name)
if options.basedir and write_code:
c = helper.CodeWriter(clf, features, self.func_name, self.fname, options.verbose)
c.func_signature = """
const Solver* solver
, const VarData& varData
, uint64_t sumConflicts_during
, uint64_t sumDecisions_during
, uint64_t sumPropagations_during
, uint64_t sumAntecedents_during
, uint64_t sumAntecedentsLits_during
, uint64_t sumConflictClauseLits_during
, uint64_t sumDecisionBasedCl_during
, uint64_t sumClLBD_during
, uint64_t sumClSize_during
, uint64_t clauses_below
"""
c.func_call = """
solver
, varData
, sumConflicts_during
, sumDecisions_during
, sumPropagations_during
, sumAntecedents_during
, sumAntecedentsLits_during
, sumConflictClauseLits_during
, sumDecisionBasedCl_during
, sumClLBD_during
, sumClSize_during
, clauses_below
"""
c.per_func_defines = """"""
c.file_header = """
#include "clause.h"
#include "vardata.h"
#include "solver.h"
#include <cmath>
namespace CMSat {
"""
c.fix_feat_name = self.fix_feat_name
c.clean_up()
c.print_full_code()
precision, recall, accuracy = helper.conf_matrixes(
test, features, to_predict, clf,
toprint="test", average="micro")
helper.conf_matrixes(
train, features, to_predict, clf,
toprint="train", average="micro")
# TODO do L1 regularization
# TODO do principal component analysis
if not final:
return best_features
else:
return prec+recall+acc
def learn(self):
self.cut_into_chunks()
features = list(self.df)
features.remove("clust")
features.remove("x.class")
features.remove("x.num_used")
if options.raw_data_plots:
pd.options.display.mpl_style = "default"
self.df.hist()
self.df.boxplot()
if not options.only_final:
top_n_feats = self.one_classifier(features, "x.class", final=False)
if options.show:
plt.show()
if options.get_best_topn_feats is not None:
greedy_features = helper.calc_greedy_best_features(
top_n_feats, options.get_best_topn_feats,
self)
return
best_features = [
'var_data_picktime.flipped_confs_ago',
'(var_dist.tot_act_long_red_cls/var_dist.num_red_long_cls)',
'var_data_picktime.conflicts_since_decided',
'(var_data_picktime.num_decided/var_data_picktime.num_decided_pos)',
'(var_dist.red_num_times_in_long_clause/var_data_picktime.num_propagated)',
'(var_dist.red_num_times_in_long_clause/var_data_picktime.num_decided)',
'var_data_picktime.rel_activity_at_picktime',
'(var_data_picktime.sumAntecedentsLits_below_during/var_data_picktime.sumAntecedentsLits_at_picktime)',
'(var_data_picktime.num_propagated/var_data_picktime.num_propagated_pos)',
'var_data_picktime.conflicts_since_propagated',
]
self.one_classifier(best_features, "x.class",
final=True,
write_code=True)
if options.show:
plt.show()
if __name__ == "__main__":
usage = "usage: %(prog)s [options] file.sqlite"
parser = argparse.ArgumentParser(usage=usage)
# dataframe
parser.add_argument("fname", type=str, metavar='PANDASFILE')
parser.add_argument("--verbose", "-v", action="store_true", default=False,
dest="verbose", help="Print more output")
parser.add_argument("--top", default=40, type=int, metavar="TOPN",
dest="top_num_features", help="Candidates are top N features for greedy selector")
parser.add_argument("--printfeat", action="store_true", default=False,
dest="print_features", help="Print features")
parser.add_argument("--check", action="store_true", default=False,
dest="check_row_data", help="Check row data for NaN or float overflow")
parser.add_argument("--greedy", default=None, type=int, metavar="TOPN",
dest="get_best_topn_feats", help="Greedy Best K top features from the top N features given by '--top N'")
parser.add_argument("--show", default=False, action="store_true",
dest="show", help="Show graphs")
parser.add_argument("--final", default=False, action="store_true",
dest="only_final", help="Only generate final predictor")
parser.add_argument("--rawplots", action="store_true", default=False,
dest="raw_data_plots", help="Display raw data plots")
parser.add_argument("--dot", type=str, default=None,
dest="dot", help="Create DOT file")
parser.add_argument("--basedir", type=str,
dest="basedir", help="The base directory of where the CryptoMiniSat source code is")
parser.add_argument("--clust", default=False, action="store_true",
dest="use_clusters", help="Use clusters")
parser.add_argument("--conf", default=0, type=int,
dest="conf_num", help="Which predict configuration this is")
parser.add_argument("--picktimeonly", default=False, action="store_true",
dest="picktime_only", help="Only use and generate pictime data")
# tree/forest options
parser.add_argument("--depth", default=None, type=int,
dest="tree_depth", help="Depth of the tree to create")
parser.add_argument("--split", default=0.01, type=float, metavar="RATIO",
dest="min_samples_split", help="Split in tree if this many samples or above. Used as a percentage of datapoints")
parser.add_argument("--numtrees", default=5, type=int,
dest="num_trees", help="How many trees to generate for the forest")
# data filtering
parser.add_argument("--only", default=0.99, type=float,
dest="only_pecr", help="Only use this percentage of data")
parser.add_argument("-q", default=2, type=int, metavar="QUANTS",
dest="quantiles", help="Number of quantiles we want")
parser.add_argument("--nocomputed", default=False, action="store_true",
dest="no_computed", help="Don't add computed features")
parser.add_argument("--csv", action="store_true", default=False,
dest="dump_csv", help="Dump CSV (for weka)")
# type of classifier
parser.add_argument("--tree", default=False, action="store_true",
dest="final_is_tree", help="Final classifier should be a tree")
parser.add_argument("--svm", default=False, action="store_true",
dest="final_is_svm", help="Final classifier should be an svm")
parser.add_argument("--lreg", default=False, action="store_true",
dest="final_is_logreg", help="Final classifier should be a logistic regression")
parser.add_argument("--forest", default=False, action="store_true",
dest="final_is_forest", help="Final classifier should be a forest")
parser.add_argument("--voting", default=False, action="store_true",
dest="final_is_voting", help="Final classifier should be a voting of all of: forest, svm, logreg")
options = parser.parse_args()
if options.fname is None:
print("ERROR: You must give the pandas file!")
exit(-1)
df = pd.read_pickle(options.fname)
rem_useless_features(df)
if not options.no_computed:
add_computed_features(df)
# cluster setup
if options.use_clusters:
used_clusters = df.groupby("clust").nunique()
clusters = []
for clust, _ in used_clusters["clust"].iteritems():
clusters.append(clust)
else:
clusters = [0]
df["clust"] = 0
# generation
for clno in clusters:
funcname = "maple_reward_conf{conf_num}_cluster{clno}".format(
clno=clno, conf_num=options.conf_num)
fname = "maple_predictor_conf{conf_num}_cluster{clno}.h".format(
clno=clno, conf_num=options.conf_num)
if options.basedir is not None:
f = options.basedir+"/"+fname
else:
f = None
p = Learner(
df,
funcname=funcname,
fname=f,
cluster_no=clno)
p.learn()
|