File: vardata_predict.py

package info (click to toggle)
cryptominisat 5.11.4%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,432 kB
  • sloc: cpp: 55,148; ansic: 9,642; python: 8,899; sh: 1,336; php: 477; sql: 403; javascript: 173; xml: 34; makefile: 15
file content (530 lines) | stat: -rwxr-xr-x 21,510 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.

from __future__ import print_function
import sklearn.ensemble
import sklearn.tree
import sqlite3
import argparse
import time
import pickle
import re
import pandas as pd
import numpy as np
import os.path
import sys
import helper
import sklearn
import functools
ver = sklearn.__version__.split(".")
if int(ver[1]) < 20:
    from sklearn.cross_validation import train_test_split
else:
    from sklearn.model_selection import train_test_split


def add_computed_features(df):
    print("Original number of features:", len(list(df)))
    print("Adding computed features...")
    cols = list(df)
    divide = functools.partial(helper.divide, df=df, features=cols, verb=options.verbose)

    if not options.picktime_only:
        # create "during"
        for col in cols:
            if "_at_fintime" in col:
                during_name = col.replace("_at_fintime", "_during")
                at_picktime_name = col.replace("_at_fintime", "_at_picktime")
                at_fintime_name = col
                if options.verbose:
                    print("fintime name: ", at_fintime_name)
                    print("picktime name: ", at_picktime_name)
                df[during_name] = df[at_fintime_name]-df[at_picktime_name]

        # remove picktime & fintime, only use "during"
        cols = list(df)
        for c in cols:
            if "at_picktime" in c or "at_fintime" in c:
                del df[c]

    else:
        # remove everything to do with "clauses_below" and "at_fintime"
        cols = list(df)
        for c in cols:
            if "var_data_fintime" in c:
                del df[c]

    if False:
        # per-conflicts, per-decisions, per-lits
        divisors = [
            "var_data_picktime.sumConflicts_at_picktime"
            , "var_data_picktime.sumClLBD_at_picktime"
            , "var_data_picktime.sumClSize_at_picktime"
            , "var_data_picktime.sumConflictClauseLits_at_picktime"
            # neutral below
            , "var_data_picktime.dec_depth"
            # below during
            , "var_data_picktime.inside_conflict_clause_antecedents_at_picktime"
            , "var_data_picktime.sumDecisions_below_during"
            , "var_data_picktime.sumPropagations_below_during"
            , "var_data_picktime.sumConflicts_below_during"
            , "var_data_picktime.sumAntecedents_below_during"
            , "var_data_picktime.sumConflictClauseLits_below_during"
            , "var_data_picktime.sumAntecedentsLits_below_during"
            , "var_data_picktime.sumClSize_below_during"
            , "var_data_picktime.sumClLBD_below_during"
            ]

        cols = list(df)
        for col in cols:
            if "x." not in col and "var_data_use" not in col:
                for divisor in divisors:
                    divide(col, divisor)

    # divide var_dist by szfeat, all-by-all
    if False:
        for c in cols:
            if "szfeat" in c:
                for c2 in cols:
                    if "var_dist" in c2:
                        divide(c2, c)

    # divide during by during, all-by-all
    if True:
        for c in cols:
            if "during" in c:
                for c2 in cols:
                    if "during" in c2:
                        divide(c2, c)

    df["var_dist.num_irred_cls"] = df["var_dist.num_irred_long_cls"] + df["var_dist.num_irred_bin_cls"]
    df["var_dist.num_red_cls"] = df["var_dist.num_red_long_cls"] + df["var_dist.num_red_bin_cls"]

    for red in ["red", "irred"]:
        divide("var_dist.{red}_num_times_in_bin_clause".format(red=red), "var_dist.num_{red}_bin_cls".format(red=red))
        divide("var_dist.{red}_num_times_in_long_clause".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
        divide("var_dist.{red}_satisfies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
        divide("var_dist.{red}_tot_num_lit_of_bin_it_appears_in".format(red=red), "var_dist.num_{red}_bin_cls".format(red=red))
        divide("var_dist.{red}_tot_num_lit_of_long_cls_it_appears_in".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
        divide("var_dist.{red}_sum_var_act_of_cls".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
        divide("var_dist.{red}_satisfies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
        divide("var_dist.{red}_falsifies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
        divide("var_dist.{red}_tot_num_lit_of_long_cls_it_appears_in".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
        divide("var_dist.{red}_sum_var_act_of_cls".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))
        divide("var_dist.{red}_satisfies_cl".format(red=red), "var_dist.num_{red}_cls".format(red=red))
        divide("var_dist.{red}_sum_var_act_of_cls".format(red=red), "var_dist.num_{red}_long_cls".format(red=red))

    divide("var_dist.tot_act_long_red_cls", "var_dist.num_red_long_cls")

    divide("var_data_picktime.inside_conflict_clause_antecedents_during_at_picktime",
           "var_data_picktime.sumAntecedentsLits_at_picktime")

    divide("var_data_picktime.sumAntecedentsLits_below_during",
           "var_data_picktime.sumAntecedentsLits_at_picktime")






    divide("var_data_picktime.inside_conflict_clause_during_at_picktime",
           "var_data_picktime.sumConflicts_at_picktime")
    divide("var_data_picktime.inside_conflict_clause_antecedents_at_picktime",
        "var_data_picktime.sumAntecedentsLits_at_picktime")

    divide("var_data_picktime.num_decided", "var_data_picktime.sumDecisions_at_picktime")
    divide("var_data_picktime.num_decided_pos", "var_data_picktime.sumDecisions_at_picktime")
    divide("var_data_picktime.num_decided", "var_data_picktime.num_decided_pos")

    divide("var_data_picktime.num_propagated", "var_data_picktime.sumPropagations_at_picktime")
    divide("var_data_picktime.num_propagated_pos", "var_data_picktime.sumPropagations_at_picktime")
    divide("var_data_picktime.num_propagated", "var_data_picktime.num_propagated_pos")


    for c in cols:
        if "var_dist.num_" in c:
            del df[c]
    del df["var_dist.num_irred_cls"]
    del df["var_dist.num_red_cls"]

    # we divide these and then delete
    xs = [
        "var_dist.red_num_times_in_long_clause",
        "var_data_picktime.inside_conflict_clause_at_picktime",
        "var_data_picktime.sumClSize_at_picktime",
        "var_data_picktime.sumClLBD_at_picktime",
        "var_data_picktime.sumAntecedents_at_picktime",
        "var_data_picktime.sumAntecedentsLits_at_picktime",
        "var_data_picktime.sumConflictClauseLits_at_picktime",
        "var_data_picktime.inside_conflict_clause_antecedents_at_picktime",
        "var_data_picktime.inside_conflict_clause_antecedents_during_at_picktime",
        "var_data_picktime.sumAntecedentsLits_below_during",
        "var_data_picktime.inside_conflict_clause_glue_at_picktime",
        "var_data_picktime.inside_conflict_clause_glue_during_at_picktime"
        ]
    ys = [
        "var_data_picktime.sumConflicts_at_picktime",
        "var_data_picktime.num_decided",
        "var_data_picktime.num_propagated"
    ]
    for x in xs:
        for y in ys:
            divide(x, y)
        del df[x]



    todel = [
        "var_data_picktime.latest_vardist_feature_calc",

        "var_dist.red_falsifies_cl",
        "var_dist.irred_falsifies_cl",
        "var_dist.red_satisfies_cl",
        "var_dist.irred_satisfies_cl",

        "var_data_picktime.dec_depth",
        "var_dist.red_num_times_in_bin_clause",
        "var_dist.irred_sum_var_act_of_cls",
        "var_dist.tot_act_long_red_cls",
        "var_dist.red_tot_num_lit_of_long_cls_it_appears_in",
        "var_dist.red_sum_var_act_of_cls",
        #"rst.branch_strategy",

        "var_data_picktime.num_decided",
        "var_data_picktime.num_decided_pos",
        "var_data_picktime.num_propagated",
        "var_data_picktime.num_propagated_pos",
        "var_data_picktime.sumPropagations_at_picktime",
        "var_data_picktime.sumDecisions_at_picktime",

        "var_data_picktime.inside_conflict_clause_during_at_picktime"
        ]
    for d in todel:
        del df[d]

    for c in cols:
        if "rst." in c and "strategy" not in c and "restart_type" not in c:
            if c in list(df):
                del df[c]

    print("Done adding computed features. New number of features: ", len(list(df)))


def rem_useless_features(df):
    col = list(df)
    for c in col:
        if "restart_type" in c or "szfeat" in c:
            del df[c]

    # remove hidden data
    del df["sum_cl_use.num_used"]
    pass


class Learner:
    def __init__(self, df, funcname, fname, cluster_no):
        self.df = df
        self.func_name = funcname
        self.fname = fname
        self.cluster_no = cluster_no

    def cut_into_chunks(self):
        df["x.class"] = pd.qcut(
            df["x.num_used"],
            q=options.quantiles,
            duplicates='drop',
            labels=False)

        df['x.class'] = df['x.class'].astype(str)

    @staticmethod
    def fix_feat_name(x):
        if "during" in x or "clauses_below" in x:
            x = x.replace("var_data_", "")

        return x

    def one_classifier(self, features, to_predict, final, write_code=False):
        print("-> Number of features  :", len(features))
        print("-> Number of datapoints:", self.df.shape)
        print("-> Predicting          :", to_predict)

        # get smaller part to work on
        # also, copy it so we don't get warning about setting a slice of a DF
        if options.only_pecr >= 0.98:
            df = self.df.copy()
        else:
            _, df_tmp = train_test_split(self.df, test_size=options.only_pecr)
            df = df_tmp.copy()
            print("-> Number of datapoints after applying '--only':", df.shape)

        if options.dump_csv:
            fname = "mydump.csv"
            print("Dumping CSV data to:", fname)
            df.to_csv(fname, index=False, columns=sorted(list(df)))

        if options.check_row_data:
            helper.check_too_large_or_nan_values(df, features+["x.class"])
            print("Checked, all good!")

        train, test = train_test_split(df, test_size=0.33)
        X_train = train[features]
        y_train = train[to_predict]

        t = time.time()
        clf = None
        if final:
            split_point = helper.calc_min_split_point(
                df, options.min_samples_split)
            clf = sklearn.tree.DecisionTreeClassifier(
                max_depth=options.tree_depth,
                min_samples_split=split_point)
        else:
            clf = sklearn.ensemble.RandomForestClassifier(
                n_estimators=1000,
                max_features="sqrt")

        del df
        clf.fit(X_train, y_train)
        print("Training finished. T: %-3.2f" % (time.time() - t))

        if not final:
            best_features = helper.print_feature_ranking(
                clf, X_train,
                top_num_features=options.top_num_features,
                features=features,
                plot=options.show)
        else:
            if options.dot is not None:
                if not options.final_is_tree:
                    print("ERROR: You cannot use the DOT function on non-trees")
                    exit(-1)

                helper.output_to_classical_dot(
                    clf, features,
                    fname=options.dot + "-" + self.func_name)

            if options.basedir and write_code:
                c = helper.CodeWriter(clf, features, self.func_name, self.fname, options.verbose)
                c.func_signature = """
                const Solver*    solver
                , const VarData& varData
                , uint64_t       sumConflicts_during
                , uint64_t       sumDecisions_during
                , uint64_t       sumPropagations_during
                , uint64_t       sumAntecedents_during
                , uint64_t       sumAntecedentsLits_during
                , uint64_t       sumConflictClauseLits_during
                , uint64_t       sumDecisionBasedCl_during
                , uint64_t       sumClLBD_during
                , uint64_t       sumClSize_during
                , uint64_t       clauses_below
                """
                c.func_call = """
                solver
                , varData
                , sumConflicts_during
                , sumDecisions_during
                , sumPropagations_during
                , sumAntecedents_during
                , sumAntecedentsLits_during
                , sumConflictClauseLits_during
                , sumDecisionBasedCl_during
                , sumClLBD_during
                , sumClSize_during
                , clauses_below
                """
                c.per_func_defines = """"""
                c.file_header = """
                #include "clause.h"
                #include "vardata.h"
                #include "solver.h"
                #include <cmath>

                namespace CMSat {
                """
                c.fix_feat_name = self.fix_feat_name
                c.clean_up()
                c.print_full_code()

        precision, recall, accuracy = helper.conf_matrixes(
            test, features, to_predict, clf,
            toprint="test", average="micro")
        helper.conf_matrixes(
            train, features, to_predict, clf,
            toprint="train", average="micro")

        # TODO do L1 regularization
        # TODO do principal component analysis

        if not final:
            return best_features
        else:
            return prec+recall+acc

    def learn(self):
        self.cut_into_chunks()
        features = list(self.df)
        features.remove("clust")
        features.remove("x.class")
        features.remove("x.num_used")

        if options.raw_data_plots:
            pd.options.display.mpl_style = "default"
            self.df.hist()
            self.df.boxplot()

        if not options.only_final:
            top_n_feats = self.one_classifier(features, "x.class", final=False)
            if options.show:
                plt.show()

            if options.get_best_topn_feats is not None:
                greedy_features = helper.calc_greedy_best_features(
                    top_n_feats, options.get_best_topn_feats,
                    self)

            return

        best_features = [
            'var_data_picktime.flipped_confs_ago',
            '(var_dist.tot_act_long_red_cls/var_dist.num_red_long_cls)',
            'var_data_picktime.conflicts_since_decided',
            '(var_data_picktime.num_decided/var_data_picktime.num_decided_pos)',
            '(var_dist.red_num_times_in_long_clause/var_data_picktime.num_propagated)',
            '(var_dist.red_num_times_in_long_clause/var_data_picktime.num_decided)',
            'var_data_picktime.rel_activity_at_picktime',
            '(var_data_picktime.sumAntecedentsLits_below_during/var_data_picktime.sumAntecedentsLits_at_picktime)',
            '(var_data_picktime.num_propagated/var_data_picktime.num_propagated_pos)',
            'var_data_picktime.conflicts_since_propagated',
            ]

        self.one_classifier(best_features, "x.class",
                            final=True,
                            write_code=True)

        if options.show:
            plt.show()


if __name__ == "__main__":
    usage = "usage: %(prog)s [options] file.sqlite"
    parser = argparse.ArgumentParser(usage=usage)

    # dataframe
    parser.add_argument("fname", type=str, metavar='PANDASFILE')
    parser.add_argument("--verbose", "-v", action="store_true", default=False,
                        dest="verbose", help="Print more output")
    parser.add_argument("--top", default=40, type=int, metavar="TOPN",
                        dest="top_num_features", help="Candidates are top N features for greedy selector")
    parser.add_argument("--printfeat", action="store_true", default=False,
                        dest="print_features", help="Print features")
    parser.add_argument("--check", action="store_true", default=False,
                        dest="check_row_data", help="Check row data for NaN or float overflow")
    parser.add_argument("--greedy", default=None, type=int, metavar="TOPN",
                        dest="get_best_topn_feats", help="Greedy Best K top features from the top N features given by '--top N'")
    parser.add_argument("--show", default=False, action="store_true",
                        dest="show", help="Show graphs")
    parser.add_argument("--final", default=False, action="store_true",
                        dest="only_final", help="Only generate final predictor")
    parser.add_argument("--rawplots", action="store_true", default=False,
                        dest="raw_data_plots", help="Display raw data plots")
    parser.add_argument("--dot", type=str, default=None,
                        dest="dot", help="Create DOT file")
    parser.add_argument("--basedir", type=str,
                        dest="basedir", help="The base directory of where the CryptoMiniSat source code is")
    parser.add_argument("--clust", default=False, action="store_true",
                        dest="use_clusters", help="Use clusters")
    parser.add_argument("--conf", default=0, type=int,
                        dest="conf_num", help="Which predict configuration this is")
    parser.add_argument("--picktimeonly", default=False, action="store_true",
                        dest="picktime_only", help="Only use and generate pictime data")

    # tree/forest options
    parser.add_argument("--depth", default=None, type=int,
                        dest="tree_depth", help="Depth of the tree to create")
    parser.add_argument("--split", default=0.01, type=float, metavar="RATIO",
                        dest="min_samples_split", help="Split in tree if this many samples or above. Used as a percentage of datapoints")
    parser.add_argument("--numtrees", default=5, type=int,
                        dest="num_trees", help="How many trees to generate for the forest")

    # data filtering
    parser.add_argument("--only", default=0.99, type=float,
                        dest="only_pecr", help="Only use this percentage of data")
    parser.add_argument("-q", default=2, type=int, metavar="QUANTS",
                        dest="quantiles", help="Number of quantiles we want")
    parser.add_argument("--nocomputed", default=False, action="store_true",
                        dest="no_computed", help="Don't add computed features")
    parser.add_argument("--csv", action="store_true", default=False,
                        dest="dump_csv", help="Dump CSV (for weka)")

    # type of classifier
    parser.add_argument("--tree", default=False, action="store_true",
                        dest="final_is_tree", help="Final classifier should be a tree")
    parser.add_argument("--svm", default=False, action="store_true",
                        dest="final_is_svm", help="Final classifier should be an svm")
    parser.add_argument("--lreg", default=False, action="store_true",
                        dest="final_is_logreg", help="Final classifier should be a logistic regression")
    parser.add_argument("--forest", default=False, action="store_true",
                        dest="final_is_forest", help="Final classifier should be a forest")
    parser.add_argument("--voting", default=False, action="store_true",
                        dest="final_is_voting", help="Final classifier should be a voting of all of: forest, svm, logreg")

    options = parser.parse_args()

    if options.fname is None:
        print("ERROR: You must give the pandas file!")
        exit(-1)

    df = pd.read_pickle(options.fname)

    rem_useless_features(df)
    if not options.no_computed:
        add_computed_features(df)

    # cluster setup
    if options.use_clusters:
        used_clusters = df.groupby("clust").nunique()
        clusters = []
        for clust, _ in used_clusters["clust"].iteritems():
            clusters.append(clust)
    else:
        clusters = [0]
        df["clust"] = 0

    # generation
    for clno in clusters:
        funcname = "maple_reward_conf{conf_num}_cluster{clno}".format(
                clno=clno, conf_num=options.conf_num)

        fname = "maple_predictor_conf{conf_num}_cluster{clno}.h".format(
            clno=clno, conf_num=options.conf_num)

        if options.basedir is not None:
            f = options.basedir+"/"+fname
        else:
            f = None

        p = Learner(
            df,
            funcname=funcname,
            fname=f,
            cluster_no=clno)
        p.learn()