1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
  
     | 
    
      /*
 ---------------------------------------------------------------------------
 Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 LICENSE TERMS
 The free distribution and use of this software in both source and binary
 form is allowed (with or without changes) provided that:
   1. distributions of this source code include the above copyright
      notice, this list of conditions and the following disclaimer;
   2. distributions in binary form include the above copyright
      notice, this list of conditions and the following disclaimer
      in the documentation and/or other associated materials;
   3. the copyright holder's name is not used to endorse products
      built using this software without specific written permission.
 ALTERNATIVELY, provided that this notice is retained in full, this product
 may be distributed under the terms of the GNU General Public License (GPL),
 in which case the provisions of the GPL apply INSTEAD OF those given above.
 DISCLAIMER
 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 16/01/2004
 This is a byte oriented version of SHA1 that operates on arrays of bytes
 stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
*/
#include <string.h>     /* for memcpy() etc.        */
#include <stdlib.h>     /* for _lrotl with VC++     */
#include "sha1.h"
#if defined(__cplusplus)
extern "C"
{
#endif
/*
    To obtain the highest speed on processors with 32-bit words, this code
    needs to determine the order in which bytes are packed into such words.
    The following block of code is an attempt to capture the most obvious
    ways in which various environemnts specify their endian definitions.
    It may well fail, in which case the definitions will need to be set by
    editing at the points marked **** EDIT HERE IF NECESSARY **** below.
*/
/*  PLATFORM SPECIFIC INCLUDES */
#define BRG_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
#define BRG_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */
#if defined(__GNUC__) || defined(__GNU_LIBRARY__)
#  if defined(__FreeBSD__) || defined(__OpenBSD__)
#    include <sys/endian.h>
#  elif defined( BSD ) && ( BSD >= 199103 )
#      include <machine/endian.h>
#  elif defined(__APPLE__)
#    if defined(__BIG_ENDIAN__) && !defined( BIG_ENDIAN )
#      define BIG_ENDIAN
#    elif defined(__LITTLE_ENDIAN__) && !defined( LITTLE_ENDIAN )
#      define LITTLE_ENDIAN
#    endif
#  else
#    include <endian.h>
#    if !defined(__BEOS__)
#      include <byteswap.h>
#    endif
#  endif
#endif
#if !defined(PLATFORM_BYTE_ORDER)
#  if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
#    if    defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif !defined(LITTLE_ENDIAN) &&  defined(BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    endif
#  elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
#    if    defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif !defined(_LITTLE_ENDIAN) &&  defined(_BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#   endif
#  elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
#    if    defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif !defined(__LITTLE_ENDIAN__) &&  defined(__BIG_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#    elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
#      define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#    endif
#  endif
#endif
/*  if the platform is still unknown, try to find its byte order    */
/*  from commonly used machine defines                              */
#if !defined(PLATFORM_BYTE_ORDER)
#if   defined( __alpha__ ) || defined( __alpha ) || defined( i386 )       || \
      defined( __i386__ )  || defined( _M_I86 )  || defined( _M_IX86 )    || \
      defined( __OS2__ )   || defined( sun386 )  || defined( __TURBOC__ ) || \
      defined( vax )       || defined( vms )     || defined( VMS )        || \
      defined( __VMS )
#  define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#elif defined( AMIGA )    || defined( applec )  || defined( __AS400__ )  || \
      defined( _CRAY )    || defined( __hppa )  || defined( __hp9000 )   || \
      defined( ibm370 )   || defined( mc68000 ) || defined( m68k )       || \
      defined( __MRC__ )  || defined( __MVS__ ) || defined( __MWERKS__ ) || \
      defined( sparc )    || defined( __sparc)  || defined( SYMANTEC_C ) || \
      defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
#  define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#elif 0     /* **** EDIT HERE IF NECESSARY **** */
#  define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#elif 0     /* **** EDIT HERE IF NECESSARY **** */
#  define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#else
#  error Please edit sha1.c (line 134 or 136) to set the platform byte order
#endif
#endif
#ifdef _MSC_VER
#pragma intrinsic(memcpy)
#endif
#if 0 && defined(_MSC_VER)
#define rotl32  _lrotl
#define rotr32  _lrotr
#else
#define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
#endif
#if !defined(bswap_32)
#define bswap_32(x) (rotr32((x), 24) & 0x00ff00ff | rotr32((x), 8) & 0xff00ff00)
#endif
#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef  SWAP_BYTES
#endif
#if defined(SWAP_BYTES)
#define bsw_32(p,n) \
    { int _i = (n); while(_i--) ((sha1_32t*)p)[_i] = bswap_32(((sha1_32t*)p)[_i]); }
#else
#define bsw_32(p,n)
#endif
#define SHA1_MASK   (SHA1_BLOCK_SIZE - 1)
#if 0
#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
#define parity(x,y,z)   ((x) ^ (y) ^ (z))
#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#else   /* Discovered by Rich Schroeppel and Colin Plumb   */
#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
#define parity(x,y,z)   ((x) ^ (y) ^ (z))
#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
#endif
/* Compile 64 bytes of hash data into SHA1 context. Note    */
/* that this routine assumes that the byte order in the     */
/* ctx->wbuf[] at this point is in such an order that low   */
/* address bytes in the ORIGINAL byte stream in this buffer */
/* will go to the high end of 32-bit words on BOTH big and  */
/* little endian systems                                    */
#ifdef ARRAY
#define q(v,n)  v[n]
#else
#define q(v,n)  v##n
#endif
#define one_cycle(v,a,b,c,d,e,f,k,h)            \
    q(v,e) += rotr32(q(v,a),27) +               \
              f(q(v,b),q(v,c),q(v,d)) + k + h;  \
    q(v,b)  = rotr32(q(v,b), 2)
#define five_cycle(v,f,k,i)                 \
    one_cycle(v, 0,1,2,3,4, f,k,hf(i  ));   \
    one_cycle(v, 4,0,1,2,3, f,k,hf(i+1));   \
    one_cycle(v, 3,4,0,1,2, f,k,hf(i+2));   \
    one_cycle(v, 2,3,4,0,1, f,k,hf(i+3));   \
    one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
void sha1_compile(sha1_ctx ctx[1])
{   sha1_32t    *w = ctx->wbuf;
#ifdef ARRAY
    sha1_32t    v[5];
    memcpy(v, ctx->hash, 5 * sizeof(sha1_32t));
#else
    sha1_32t    v0, v1, v2, v3, v4;
    v0 = ctx->hash[0]; v1 = ctx->hash[1];
    v2 = ctx->hash[2]; v3 = ctx->hash[3];
    v4 = ctx->hash[4];
#endif
#define hf(i)   w[i]
    five_cycle(v, ch, 0x5a827999,  0);
    five_cycle(v, ch, 0x5a827999,  5);
    five_cycle(v, ch, 0x5a827999, 10);
    one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
#undef  hf
#define hf(i) (w[(i) & 15] = rotl32(                    \
                 w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
               ^ w[((i) +  2) & 15] ^ w[(i) & 15], 1))
    one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
    one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
    one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
    one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
    five_cycle(v, parity, 0x6ed9eba1,  20);
    five_cycle(v, parity, 0x6ed9eba1,  25);
    five_cycle(v, parity, 0x6ed9eba1,  30);
    five_cycle(v, parity, 0x6ed9eba1,  35);
    five_cycle(v, maj, 0x8f1bbcdc,  40);
    five_cycle(v, maj, 0x8f1bbcdc,  45);
    five_cycle(v, maj, 0x8f1bbcdc,  50);
    five_cycle(v, maj, 0x8f1bbcdc,  55);
    five_cycle(v, parity, 0xca62c1d6,  60);
    five_cycle(v, parity, 0xca62c1d6,  65);
    five_cycle(v, parity, 0xca62c1d6,  70);
    five_cycle(v, parity, 0xca62c1d6,  75);
#ifdef ARRAY
    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
    ctx->hash[4] += v[4];
#else
    ctx->hash[0] += v0; ctx->hash[1] += v1;
    ctx->hash[2] += v2; ctx->hash[3] += v3;
    ctx->hash[4] += v4;
#endif
}
void sha1_begin(sha1_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    ctx->hash[0] = 0x67452301;
    ctx->hash[1] = 0xefcdab89;
    ctx->hash[2] = 0x98badcfe;
    ctx->hash[3] = 0x10325476;
    ctx->hash[4] = 0xc3d2e1f0;
}
/* SHA1 hash data in an array of bytes into hash buffer and */
/* call the hash_compile function as required.              */
void sha1_hash(const unsigned char data[], size_t len, sha1_ctx ctx[1])
{   sha1_32t pos = (sha1_32t)(ctx->count[0] & SHA1_MASK),
            space = SHA1_BLOCK_SIZE - pos;
    const unsigned char *sp = data;
    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);
    while(len >= space)     /* tranfer whole blocks if possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0;
        bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2);
        sha1_compile(ctx);
    }
    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}
/* SHA1 final padding and digest calculation  */
void sha1_end(unsigned char hval[], sha1_ctx ctx[1])
{   sha1_32t    i = (sha1_32t)(ctx->count[0] & SHA1_MASK);
    /* put bytes in the buffer in an order in which references to   */
    /* 32-bit words will put bytes with lower addresses into the    */
    /* top of 32 bit words on BOTH big and little endian machines   */
    bsw_32(ctx->wbuf, (i + 3) >> 2);
    /* we now need to mask valid bytes and add the padding which is */
    /* a single 1 bit and as many zero bits as necessary. Note that */
    /* we can always add the first padding byte here because the    */
    /* buffer always has at least one empty slot                    */
    ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
    ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
    /* we need 9 or more empty positions, one for the padding byte  */
    /* (above) and eight for the length count. If there is not      */
    /* enough space, pad and empty the buffer                       */
    if(i > SHA1_BLOCK_SIZE - 9)
    {
        if(i < 60) ctx->wbuf[15] = 0;
        sha1_compile(ctx);
        i = 0;
    }
    else    /* compute a word index for the empty buffer positions  */
        i = (i >> 2) + 1;
    while(i < 14) /* and zero pad all but last two positions        */
        ctx->wbuf[i++] = 0;
    /* the following 32-bit length fields are assembled in the      */
    /* wrong byte order on little endian machines but this is       */
    /* corrected later since they are only ever used as 32-bit      */
    /* word values.                                                 */
    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
    ctx->wbuf[15] = ctx->count[0] << 3;
    sha1_compile(ctx);
    /* extract the hash value as bytes in case the hash buffer is   */
    /* misaligned for 32-bit words                                  */
    for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
}
void sha1(unsigned char hval[], const unsigned char data[], size_t len)
{   sha1_ctx    cx[1];
    sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
}
#if defined(__cplusplus)
}
#endif
 
     |