1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
* Reed-Solomon decoder, based on libfec
*
* Copyright (C) 2002, Phil Karn, KA9Q
* libcryptsetup modifications
* Copyright (C) 2017-2021 Red Hat, Inc. All rights reserved.
*
* This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include <stdlib.h>
#include "rs.h"
int decode_rs_char(struct rs* rs, data_t* data)
{
int deg_lambda, el, deg_omega, syn_error, count;
int i, j, r, k;
data_t q, tmp, num1, num2, den, discr_r;
/* FIXME: remove VLAs here */
data_t lambda[rs->nroots + 1], s[rs->nroots]; /* Err+Eras Locator poly and syndrome poly */
data_t b[rs->nroots + 1], t[rs->nroots + 1], omega[rs->nroots + 1];
data_t root[rs->nroots], reg[rs->nroots + 1], loc[rs->nroots];
memset(s, 0, rs->nroots * sizeof(data_t));
memset(b, 0, (rs->nroots + 1) * sizeof(data_t));
/* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
for (i = 0; i < rs->nroots; i++)
s[i] = data[0];
for (j = 1; j < rs->nn - rs->pad; j++) {
for (i = 0; i < rs->nroots; i++) {
if (s[i] == 0) {
s[i] = data[j];
} else {
s[i] = data[j] ^ rs->alpha_to[modnn(rs, rs->index_of[s[i]] + (rs->fcr + i) * rs->prim)];
}
}
}
/* Convert syndromes to index form, checking for nonzero condition */
syn_error = 0;
for (i = 0; i < rs->nroots; i++) {
syn_error |= s[i];
s[i] = rs->index_of[s[i]];
}
/*
* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
if (!syn_error)
return 0;
memset(&lambda[1], 0, rs->nroots * sizeof(lambda[0]));
lambda[0] = 1;
for (i = 0; i < rs->nroots + 1; i++)
b[i] = rs->index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = 0;
el = 0;
while (++r <= rs->nroots) { /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for (i = 0; i < r; i++) {
if ((lambda[i] != 0) && (s[r - i - 1] != A0)) {
discr_r ^= rs->alpha_to[modnn(rs, rs->index_of[lambda[i]] + s[r - i - 1])];
}
}
discr_r = rs->index_of[discr_r]; /* Index form */
if (discr_r == A0) {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1], b, rs->nroots * sizeof(b[0]));
b[0] = A0;
} else {
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for (i = 0; i < rs->nroots; i++) {
if (b[i] != A0)
t[i + 1] = lambda[i + 1] ^ rs->alpha_to[modnn(rs, discr_r + b[i])];
else
t[i + 1] = lambda[i + 1];
}
if (2 * el <= r - 1) {
el = r - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for (i = 0; i <= rs->nroots; i++)
b[i] = (lambda[i] == 0) ? A0 : modnn(rs, rs->index_of[lambda[i]] - discr_r + rs->nn);
} else {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1], b, rs->nroots * sizeof(b[0]));
b[0] = A0;
}
memcpy(lambda, t, (rs->nroots + 1) * sizeof(t[0]));
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for (i = 0; i < rs->nroots + 1; i++) {
lambda[i] = rs->index_of[lambda[i]];
if (lambda[i] != A0)
deg_lambda = i;
}
/* Find roots of the error+erasure locator polynomial by Chien search */
memcpy(®[1], &lambda[1], rs->nroots * sizeof(reg[0]));
count = 0; /* Number of roots of lambda(x) */
for (i = 1, k = rs->iprim - 1; i <= rs->nn; i++, k = modnn(rs, k + rs->iprim)) {
q = 1; /* lambda[0] is always 0 */
for (j = deg_lambda; j > 0; j--) {
if (reg[j] != A0) {
reg[j] = modnn(rs, reg[j] + j);
q ^= rs->alpha_to[reg[j]];
}
}
if (q != 0)
continue; /* Not a root */
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = k;
/* If we've already found max possible roots, abort the search to save time */
if (++count == deg_lambda)
break;
}
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
if (deg_lambda != count)
return -1;
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**rs->nroots). in index form. Also find deg(omega).
*/
deg_omega = deg_lambda - 1;
for (i = 0; i <= deg_omega; i++) {
tmp = 0;
for (j = i; j >= 0; j--) {
if ((s[i - j] != A0) && (lambda[j] != A0))
tmp ^= rs->alpha_to[modnn(rs, s[i - j] + lambda[j])];
}
omega[i] = rs->index_of[tmp];
}
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(rs->fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for (j = count - 1; j >= 0; j--) {
num1 = 0;
for (i = deg_omega; i >= 0; i--) {
if (omega[i] != A0)
num1 ^= rs->alpha_to[modnn(rs, omega[i] + i * root[j])];
}
num2 = rs->alpha_to[modnn(rs, root[j] * (rs->fcr - 1) + rs->nn)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for (i = RS_MIN(deg_lambda, rs->nroots - 1) & ~1; i >= 0; i -= 2) {
if (lambda[i + 1] != A0)
den ^= rs->alpha_to[modnn(rs, lambda[i + 1] + i * root[j])];
}
/* Apply error to data */
if (num1 != 0 && loc[j] >= rs->pad) {
data[loc[j] - rs->pad] ^= rs->alpha_to[modnn(rs, rs->index_of[num1] +
rs->index_of[num2] + rs->nn - rs->index_of[den])];
}
}
return count;
}
|