1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* Reed-Solomon encoder, based on libfec
*
* Copyright (C) 2002, Phil Karn, KA9Q
* libcryptsetup modifications
* Copyright (C) 2017-2025 Red Hat, Inc. All rights reserved.
*/
#include <string.h>
#include <stdlib.h>
#include "rs.h"
/* Initialize a Reed-Solomon codec
* symsize = symbol size, bits
* gfpoly = Field generator polynomial coefficients
* fcr = first root of RS code generator polynomial, index form
* prim = primitive element to generate polynomial roots
* nroots = RS code generator polynomial degree (number of roots)
* pad = padding bytes at front of shortened block
*/
struct rs *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad)
{
struct rs *rs;
int i, j, sr, root, iprim;
/* Check parameter ranges */
if (symsize < 0 || symsize > 8 * (int)sizeof(data_t))
return NULL;
if (fcr < 0 || fcr >= (1<<symsize))
return NULL;
if (prim <= 0 || prim >= (1<<symsize))
return NULL;
if (nroots < 0 || nroots >= (1<<symsize))
return NULL; /* Can't have more roots than symbol values! */
if (pad < 0 || pad >= ((1<<symsize) - 1 - nroots))
return NULL; /* Too much padding */
rs = calloc(1, sizeof(struct rs));
if (rs == NULL)
return NULL;
rs->mm = symsize;
rs->nn = (1<<symsize) - 1;
rs->pad = pad;
rs->alpha_to = malloc(sizeof(data_t) * (rs->nn + 1));
if (rs->alpha_to == NULL) {
free(rs);
return NULL;
}
rs->index_of = malloc(sizeof(data_t) * (rs->nn + 1));
if (rs->index_of == NULL) {
free(rs->alpha_to);
free(rs);
return NULL;
}
memset(rs->index_of, 0, sizeof(data_t) * (rs->nn + 1));
/* Generate Galois field lookup tables */
rs->index_of[0] = A0; /* log(zero) = -inf */
rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
sr = 1;
for (i = 0; i < rs->nn; i++) {
rs->index_of[sr] = i;
rs->alpha_to[i] = sr;
sr <<= 1;
if(sr & (1<<symsize))
sr ^= gfpoly;
sr &= rs->nn;
}
if (sr != 1) {
/* field generator polynomial is not primitive! */
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
/* Form RS code generator polynomial from its roots */
rs->genpoly = malloc(sizeof(data_t) * (nroots + 1));
if (rs->genpoly == NULL) {
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
rs->fcr = fcr;
rs->prim = prim;
rs->nroots = nroots;
/* Find prim-th root of 1, used in decoding */
for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn)
;
rs->iprim = iprim / prim;
rs->genpoly[0] = 1;
for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
rs->genpoly[i + 1] = 1;
/* Multiply rs->genpoly[] by @**(root + x) */
for (j = i; j > 0; j--){
if (rs->genpoly[j] != 0)
rs->genpoly[j] = rs->genpoly[j - 1] ^ rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[j]] + root)];
else
rs->genpoly[j] = rs->genpoly[j - 1];
}
/* rs->genpoly[0] can never be zero */
rs->genpoly[0] = rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[0]] + root)];
}
/* convert rs->genpoly[] to index form for quicker encoding */
for (i = 0; i <= nroots; i++)
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
return rs;
}
void free_rs_char(struct rs *rs)
{
if (!rs)
return;
free(rs->alpha_to);
free(rs->index_of);
free(rs->genpoly);
free(rs);
}
void encode_rs_char(struct rs *rs, data_t *data, data_t *parity)
{
int i, j;
data_t feedback;
memset(parity, 0, rs->nroots * sizeof(data_t));
for (i = 0; i < rs->nn - rs->nroots - rs->pad; i++) {
feedback = rs->index_of[data[i] ^ parity[0]];
if (feedback != A0) {
/* feedback term is non-zero */
#ifdef UNNORMALIZED
/* This line is unnecessary when GENPOLY[NROOTS] is unity, as it must
* always be for the polynomials constructed by init_rs() */
feedback = modnn(rs, rs->nn - rs->genpoly[rs->nroots] + feedback);
#endif
for (j = 1; j < rs->nroots; j++)
parity[j] ^= rs->alpha_to[modnn(rs, feedback + rs->genpoly[rs->nroots - j])];
}
/* Shift */
memmove(&parity[0], &parity[1], sizeof(data_t) * (rs->nroots - 1));
if (feedback != A0)
parity[rs->nroots - 1] = rs->alpha_to[modnn(rs, feedback + rs->genpoly[0])];
else
parity[rs->nroots - 1] = 0;
}
}
|