1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* cryptsetup crypto name and hex conversion helper test vectors
*
* Copyright (C) 2022-2025 Milan Broz
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utils_crypt.h"
#include "libcryptsetup.h"
#ifndef ARRAY_SIZE
# define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#endif
/*
* Cryptsetup/dm-crypt algorithm naming conversion test
*/
struct mode_test_vector {
const char *input;
const char *cipher;
const char *mode;
int keys;
};
static struct mode_test_vector mode_test_vectors[] = {
{ "aes-xts-plain", "aes", "xts-plain", 1 },
{ "aes-xts-plain64", "aes", "xts-plain64", 1 },
{ "aes-cbc-plain", "aes", "cbc-plain", 1 },
{ "aes-cbc-plain64", "aes", "cbc-plain64", 1 },
{ "aes-cbc-essiv:sha256", "aes", "cbc-essiv:sha256", 1 },
{ "aes", "aes", "cbc-plain", 1 },
{ "twofish", "twofish", "cbc-plain", 1 },
{ "cipher_null", "cipher_null", "ecb", 0 },
{ "null", "cipher_null", "ecb", 0 },
{ "xchacha12,aes-adiantum-plain64", "xchacha12,aes", "adiantum-plain64", 1 },
{ "xchacha20,aes-adiantum-plain64", "xchacha20,aes", "adiantum-plain64", 1 },
{ "aes:64-cbc-lmk", "aes:64", "cbc-lmk", 64 },
{ "des3_ede-cbc-tcw", "des3_ede" ,"cbc-tcw", 1 },
{ "aes-lrw-benbi", "aes","lrw-benbi", 1 },
};
static int test_parse_mode(void)
{
char cipher[MAX_CIPHER_LEN], mode[MAX_CIPHER_LEN];
unsigned int i;
int keys;
printf("MODECONV:");
for (i = 0; i < ARRAY_SIZE(mode_test_vectors); i++) {
if (i && !(i % 8))
printf("\n");
keys = -1;
memset(cipher, 0, sizeof(cipher));
memset(mode, 0, sizeof(mode));
printf("[%s]", mode_test_vectors[i].input ?: "NULL");
if (crypt_parse_name_and_mode(mode_test_vectors[i].input, cipher, &keys, mode) < 0 ||
strcmp(mode_test_vectors[i].cipher, cipher) ||
strcmp(mode_test_vectors[i].mode, mode) ||
mode_test_vectors[i].keys != keys) {
printf("[FAILED (%s / %s / %i)]\n", cipher, mode, keys);
return EXIT_FAILURE;
}
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
/*
* Cryptsetup/dm-crypt/dm-integrity algorithm naming conversion test
*/
struct integrity_test_vector {
bool int_mode; /* non-null if it is supported as integrity mode for LUKS2 */
const char *input;
const char *integrity;
int key_size;
};
static struct integrity_test_vector integrity_test_vectors[] = {
{ true, "aead", "aead", 0 },
{ true, "poly1305", "poly1305", 0 },
{ true, "none", "none", 0 },
{ false, "crc32", "crc32", 0 },
{ true, "hmac-sha1", "hmac(sha1)", 20 },
{ true, "hmac-sha256", "hmac(sha256)", 32 },
{ true, "hmac-sha512", "hmac(sha512)", 64 },
{ true, "cmac-aes", "cmac(aes)", 16 },
{ false, "blake2b-256", "blake2b-256", 0 },
};
static int test_parse_integrity_mode(void)
{
char integrity[MAX_CIPHER_LEN];
unsigned int i;
int key_size;
printf("INTEGRITYCONV:");
for (i = 0; i < ARRAY_SIZE(integrity_test_vectors); i++) {
memset(integrity, 0, sizeof(integrity));
printf("[%s,%i]", integrity_test_vectors[i].input ?: "NULL", integrity_test_vectors[i].key_size);
if (crypt_parse_hash_integrity_mode(integrity_test_vectors[i].input, integrity) < 0 ||
strcmp(integrity_test_vectors[i].integrity, integrity)) {
printf("[FAILED (%s)]\n", integrity);
return EXIT_FAILURE;
}
key_size = -1;
memset(integrity, 0, sizeof(integrity));
if (integrity_test_vectors[i].int_mode &&
(crypt_parse_integrity_mode(integrity_test_vectors[i].input, integrity, &key_size, 0) < 0 ||
strcmp(integrity_test_vectors[i].integrity, integrity) ||
integrity_test_vectors[i].key_size != key_size)) {
printf("[FAILED (%s / %i)]\n", integrity, key_size);
return EXIT_FAILURE;
}
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
/*
* Cryptsetup null cipher bypass algorithm name
*/
struct null_test_vector {
const char *cipher;
bool ok;
};
static struct null_test_vector null_test_vectors[] = {
{ "cipher_null-ecb", true },
{ "cipher_null", true },
{ "null", true },
{ "cipher-null", false },
{ "aes-ecb", false },
{ NULL, false },
};
static int test_cipher_null(void)
{
unsigned int i;
printf("NULLCONV:");
for (i = 0; i < ARRAY_SIZE(null_test_vectors); i++) {
printf("[%s]", null_test_vectors[i].cipher ?: "NULL");
if (crypt_is_cipher_null(null_test_vectors[i].cipher) !=
null_test_vectors[i].ok) {
printf("[FAILED]\n");
return EXIT_FAILURE;
}
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
struct hex_test_vector {
const char *hex;
const char *bytes;
ssize_t bytes_size;
bool ok;
};
static struct hex_test_vector hex_test_vectors[] = {
{ "0000000000000000", "\x00\x00\x00\x00\x00\x00\x00\x00", 8, true },
{ "abcdef0123456789", "\xab\xcd\xef\x01\x23\x45\x67\x89", 8, true },
{ "aBCDef0123456789", "\xab\xcd\xef\x01\x23\x45\x67\x89", 8, true },
{ "ff", "\xff", 1, true },
{ "f", NULL , 1, false },
{ "a-cde", NULL, 2, false },
{ "FAKE", NULL, 2, false },
{ "\x01\x02\xff", NULL, 3, false },
{ NULL, NULL, 1, false },
{ "fff", NULL, 2, false },
{ "fg", NULL, 1, false },
};
/*
* Hexa conversion test (also should be constant time)
*/
static int test_hex_conversion(void)
{
char *bytes, *hex;
ssize_t len;
unsigned int i;
printf("HEXCONV:");
for (i = 0; i < ARRAY_SIZE(hex_test_vectors); i++) {
bytes = NULL;
hex = NULL;
if (hex_test_vectors[i].hex && *hex_test_vectors[i].hex >= '0')
printf("[%s]", hex_test_vectors[i].hex);
else
printf("[INV:%i]", i);
len = crypt_hex_to_bytes(hex_test_vectors[i].hex, &bytes, 1);
if ((hex_test_vectors[i].ok && len != hex_test_vectors[i].bytes_size) ||
(!hex_test_vectors[i].ok && len >= 0)) {
printf("[FAILED]\n");
crypt_safe_free(bytes);
return EXIT_FAILURE;
}
crypt_safe_free(bytes);
hex = crypt_bytes_to_hex(hex_test_vectors[i].bytes_size, hex_test_vectors[i].bytes);
if ((hex_test_vectors[i].ok && strcasecmp(hex, hex_test_vectors[i].hex)) ||
(!hex_test_vectors[i].ok && hex)) {
printf("[FAILED]\n");
crypt_safe_free(hex);
return EXIT_FAILURE;
}
crypt_safe_free(hex);
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
static void __attribute__((noreturn)) exit_test(const char *msg, int r)
{
if (msg)
printf("%s\n", msg);
exit(r);
}
int main(__attribute__ ((unused)) int argc, __attribute__ ((unused))char *argv[])
{
setvbuf(stdout, NULL, _IONBF, 0);
#ifndef NO_CRYPTSETUP_PATH
if (getenv("CRYPTSETUP_PATH")) {
printf("Cannot run this test with CRYPTSETUP_PATH set.\n");
exit(77);
}
#endif
if (test_parse_mode())
exit_test("Parse mode test failed.", EXIT_FAILURE);
if (test_parse_integrity_mode())
exit_test("Parse integrity mode test failed.", EXIT_FAILURE);
if (test_cipher_null())
exit_test("CIPHER null test failed.", EXIT_FAILURE);
if (test_hex_conversion())
exit_test("HEX conversion test failed.", EXIT_FAILURE);
exit_test(NULL, EXIT_SUCCESS);
}
|