File: keymanage.c

package info (click to toggle)
cryptsetup 2%3A1.0.6-7
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 2,644 kB
  • ctags: 500
  • sloc: sh: 10,578; ansic: 4,114; xml: 471; makefile: 356; python: 90; perl: 44; sed: 16
file content (481 lines) | stat: -rw-r--r-- 13,519 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/*
 * LUKS - Linux Unified Key Setup 
 *
 * Copyright (C) 2004-2006, Clemens Fruhwirth <clemens@endorphin.org>
 * 
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
 

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "luks.h"
#include "af.h"
#include "pbkdf.h"
#include "sha1.h"
#include "random.h"
#include "XORblock.h"
#include <uuid/uuid.h>
#include <../lib/internal.h>

#define div_round_up(a,b) ({           \
	typeof(a) __a = (a);          \
	typeof(b) __b = (b);          \
	(__a - 1) / __b + 1;        \
})

static inline int round_up_modulo(int x, int m) {
	return div_round_up(x, m) * m;
}

struct luks_masterkey *LUKS_alloc_masterkey(int keylength)
{ 
	struct luks_masterkey *mk=malloc(sizeof(*mk) + keylength);
	mk->keyLength=keylength;
	return mk;
}

void LUKS_dealloc_masterkey(struct luks_masterkey *mk)
{
	if(NULL != mk) {
		memset(mk->key,0,mk->keyLength);
		mk->keyLength=0;
		free(mk);
	}
}

struct luks_masterkey *LUKS_generate_masterkey(int keylength)
{
	struct luks_masterkey *mk=LUKS_alloc_masterkey(keylength);
	getRandom(mk->key,keylength);
	return mk;
}

int LUKS_read_phdr(const char *device, struct luks_phdr *hdr)
{
	int devfd = 0; 
	unsigned int i; 
	int r = 0;
	char luksMagic[] = LUKS_MAGIC;
	
	devfd = open(device,O_RDONLY | O_DIRECT | O_SYNC);
	if(-1 == devfd) {
		set_error(_("Can't open device: %s\n"), device);
		return -EINVAL; 
	}

	if(read_blockwise(devfd, hdr, sizeof(struct luks_phdr)) < sizeof(struct luks_phdr)) {
		r = -EIO;
	} else if(memcmp(hdr->magic, luksMagic, LUKS_MAGIC_L)) { /* Check magic */
		set_error(_("%s is not a LUKS partition\n"), device);
		r = -EINVAL;
	} else if(memcmp(hdr->hashSpec, "sha1", 4)) { /* Check for SHA1 - other hashspecs are not implemented ATM */
		set_error(_("unknown hash spec in phdr\n"), stderr);
		r = -EINVAL;
	} else if((hdr->version = ntohs(hdr->version)) != 1) {	/* Convert every uint16/32_t item from network byte order */
		set_error(_("unknown LUKS version %d\n"), hdr->version);
		r = -EINVAL;
	} else {
		hdr->payloadOffset      = ntohl(hdr->payloadOffset);
		hdr->keyBytes           = ntohl(hdr->keyBytes);
		hdr->mkDigestIterations = ntohl(hdr->mkDigestIterations);

		for(i = 0; i < LUKS_NUMKEYS; ++i) {
			hdr->keyblock[i].active             = ntohl(hdr->keyblock[i].active);
			hdr->keyblock[i].passwordIterations = ntohl(hdr->keyblock[i].passwordIterations);
			hdr->keyblock[i].keyMaterialOffset  = ntohl(hdr->keyblock[i].keyMaterialOffset);
			hdr->keyblock[i].stripes            = ntohl(hdr->keyblock[i].stripes);
		}
	}

	close(devfd);
	return r;
}

int LUKS_write_phdr(const char *device, struct luks_phdr *hdr)
{
	int devfd = 0; 
	unsigned int i; 
	struct luks_phdr convHdr;
	int r;
	
	devfd = open(device,O_RDWR | O_DIRECT | O_SYNC);
	if(-1 == devfd) { 
		set_error(_("Can't open device %s"), device);
		return -EINVAL;
	}

	memcpy(&convHdr, hdr, sizeof(struct luks_phdr));

	/* Convert every uint16/32_t item to network byte order */
	convHdr.version            = htons(hdr->version);
	convHdr.payloadOffset      = htonl(hdr->payloadOffset);
	convHdr.keyBytes           = htonl(hdr->keyBytes);
	convHdr.mkDigestIterations = htonl(hdr->mkDigestIterations);
	for(i = 0; i < LUKS_NUMKEYS; ++i) {
		convHdr.keyblock[i].active             = htonl(hdr->keyblock[i].active);
		convHdr.keyblock[i].passwordIterations = htonl(hdr->keyblock[i].passwordIterations);
		convHdr.keyblock[i].keyMaterialOffset  = htonl(hdr->keyblock[i].keyMaterialOffset);
		convHdr.keyblock[i].stripes            = htonl(hdr->keyblock[i].stripes);
	}

	r = write_blockwise(devfd, &convHdr, sizeof(struct luks_phdr)) < sizeof(struct luks_phdr) ? -EIO : 0;

	close(devfd);
	return r;
}	

int LUKS_generate_phdr(struct luks_phdr *header, 
		       const struct luks_masterkey *mk, const char *cipherName,
		       const char *cipherMode, unsigned int stripes,
		       unsigned int alignPayload)
{
	unsigned int i=0;
	unsigned int blocksPerStripeSet = div_round_up(mk->keyLength*stripes,SECTOR_SIZE);
	int r;
	char luksMagic[] = LUKS_MAGIC;
	uuid_t partitionUuid;
	int currentSector;
	int alignSectors = 4096/SECTOR_SIZE;
	if (alignPayload == 0)
		alignPayload = alignSectors;

	memset(header,0,sizeof(struct luks_phdr));

	/* Set Magic */
	memcpy(header->magic,luksMagic,LUKS_MAGIC_L);
	header->version=1;
	strncpy(header->cipherName,cipherName,LUKS_CIPHERNAME_L);
	strncpy(header->cipherMode,cipherMode,LUKS_CIPHERMODE_L);

	/* This is hard coded ATM */
	strncpy(header->hashSpec,"sha1",LUKS_HASHSPEC_L);

	header->keyBytes=mk->keyLength;

	r = getRandom(header->mkDigestSalt,LUKS_SALTSIZE);
	if(r < 0) return r;

	/* Compute master key digest */
	header->mkDigestIterations = LUKS_MKD_ITER;
	PBKDF2_HMAC_SHA1(mk->key,mk->keyLength,
			 header->mkDigestSalt,LUKS_SALTSIZE,
			 header->mkDigestIterations,
			 header->mkDigest,LUKS_DIGESTSIZE);

	currentSector = round_up_modulo(LUKS_PHDR_SIZE, alignSectors);
	for(i = 0; i < LUKS_NUMKEYS; ++i) {
		header->keyblock[i].active = LUKS_KEY_DISABLED;
		header->keyblock[i].keyMaterialOffset = currentSector;
		header->keyblock[i].stripes = stripes;
		currentSector = round_up_modulo(currentSector + blocksPerStripeSet, alignSectors);
	}
	currentSector = round_up_modulo(currentSector, alignPayload);

	header->payloadOffset=currentSector;

	uuid_generate(partitionUuid);
        uuid_unparse(partitionUuid, header->uuid);

	return 0;
}

int LUKS_set_key(const char *device, unsigned int keyIndex, 
		 const char *password, size_t passwordLen, 
		 struct luks_phdr *hdr, struct luks_masterkey *mk,
		 struct setup_backend *backend)
{
	char derivedKey[hdr->keyBytes];
	char *AfKey;
	unsigned int AFEKSize;
	int r;
	
	if(hdr->keyblock[keyIndex].active != LUKS_KEY_DISABLED) {
		set_error( _("key %d active, purge first"), keyIndex);
		return -EINVAL;
	}
		
	if(hdr->keyblock[keyIndex].stripes < LUKS_STRIPES) {
	        set_error(_("key material section %d includes too few stripes. Header manipulation?"),keyIndex);
	         return -EINVAL;
	}
	r = getRandom(hdr->keyblock[keyIndex].passwordSalt, LUKS_SALTSIZE);
	if(r < 0) return r;

//	assert((mk->keyLength % TWOFISH_BLOCKSIZE) == 0); FIXME

	PBKDF2_HMAC_SHA1(password,passwordLen,
			 hdr->keyblock[keyIndex].passwordSalt,LUKS_SALTSIZE,
			 hdr->keyblock[keyIndex].passwordIterations,
			 derivedKey, hdr->keyBytes);
	/*
	 * AF splitting, the masterkey stored in mk->key is splitted to AfMK
	 */
	AFEKSize = hdr->keyblock[keyIndex].stripes*mk->keyLength;
	AfKey = (char *)malloc(AFEKSize);
	if(AfKey == NULL) return -ENOMEM;
	
	r = AF_split(mk->key,AfKey,mk->keyLength,hdr->keyblock[keyIndex].stripes);
	if(r < 0) goto out;

	/* Encryption via dm */
	r = LUKS_encrypt_to_storage(AfKey,
				    AFEKSize,
				    hdr,
				    derivedKey,
				    hdr->keyBytes,
				    device,
				    hdr->keyblock[keyIndex].keyMaterialOffset,
				    backend);
	if(r < 0) {
		if(!get_error())
			set_error("Failed to write to key storage");
		goto out;
	}

	/* Mark the key as active in phdr */
	hdr->keyblock[keyIndex].active = LUKS_KEY_ENABLED;
	r = LUKS_write_phdr(device,hdr);
	if(r < 0) goto out;

	r = 0;
out:
	free(AfKey);
	return r;
}

/* Try to open a particular key slot,

 */

int LUKS_open_key(const char *device, 
		  unsigned int keyIndex, 
		  const char *password, 
		  size_t passwordLen, 
		  struct luks_phdr *hdr, 
		  struct luks_masterkey *mk,
		  struct setup_backend *backend)
{
	char derivedKey[hdr->keyBytes];
	char *AfKey;
	size_t AFEKSize;
	char checkHashBuf[LUKS_DIGESTSIZE];
	int r;
	
	if(hdr->keyblock[keyIndex].active != LUKS_KEY_ENABLED) {
		return -EINVAL;
	}
	
	// assert((mk->keyLength % TWOFISH_BLOCKSIZE) == 0); FIXME

	AFEKSize = hdr->keyblock[keyIndex].stripes*mk->keyLength;
	AfKey = (char *)malloc(AFEKSize);
	if(AfKey == NULL) return -ENOMEM;
	
	PBKDF2_HMAC_SHA1(password,passwordLen,
			 hdr->keyblock[keyIndex].passwordSalt,LUKS_SALTSIZE,
			 hdr->keyblock[keyIndex].passwordIterations,
			 derivedKey, hdr->keyBytes);

	r = LUKS_decrypt_from_storage(AfKey,
				      AFEKSize,
				      hdr,
				      derivedKey,
				      hdr->keyBytes,
				      device,
				      hdr->keyblock[keyIndex].keyMaterialOffset,
				      backend);
	if(r < 0) {
		if(!get_error())
			set_error("Failed to read from key storage");
		goto out;
	}

	r = AF_merge(AfKey,mk->key,mk->keyLength,hdr->keyblock[keyIndex].stripes);
	if(r < 0) goto out;
	
	PBKDF2_HMAC_SHA1(mk->key,mk->keyLength,
			 hdr->mkDigestSalt,LUKS_SALTSIZE,
			 hdr->mkDigestIterations,
			 checkHashBuf,LUKS_DIGESTSIZE);

	r = (memcmp(checkHashBuf,hdr->mkDigest, LUKS_DIGESTSIZE) == 0)?0:-EPERM;
out:
	free(AfKey);
	return r;
}

int LUKS_open_any_key(const char *device, 
		      const char *password, 
		      size_t passwordLen,
		      struct luks_phdr *hdr, 
		      struct luks_masterkey **mk,
		      struct setup_backend *backend)
{
	unsigned int i;
	int r;

	r = LUKS_read_phdr(device, hdr);
	if(r < 0) 
      		return r;

	*mk=LUKS_alloc_masterkey(hdr->keyBytes);
	for(i=0; i<LUKS_NUMKEYS; i++) {
	    r = LUKS_open_key(device, i, password, passwordLen, hdr, *mk, backend);
	    if(r == 0) { 
		return i; 
	    } 
	    /* Do not retry for errors that are no -EPERM or -EINVAL, former meaning password wrong, latter key slot inactive */
	    if ((r != -EPERM) && (r != -EINVAL)) 
		return r;
	}
	/* Warning, early returns above */
	return -EPERM;
}

/*
 * Wipe patterns according to Gutmann's Paper
 */

static void wipeSpecial(char *buffer, size_t buffer_size, unsigned int turn)
{
        unsigned int i;
	
        unsigned char write_modes[][3] = {
                {"\x55\x55\x55"}, {"\xaa\xaa\xaa"}, {"\x92\x49\x24"},
                {"\x49\x24\x92"}, {"\x24\x92\x49"}, {"\x00\x00\x00"},
                {"\x11\x11\x11"}, {"\x22\x22\x22"}, {"\x33\x33\x33"},
                {"\x44\x44\x44"}, {"\x55\x55\x55"}, {"\x66\x66\x66"},
                {"\x77\x77\x77"}, {"\x88\x88\x88"}, {"\x99\x99\x99"},
                {"\xaa\xaa\xaa"}, {"\xbb\xbb\xbb"}, {"\xcc\xcc\xcc"},
                {"\xdd\xdd\xdd"}, {"\xee\xee\xee"}, {"\xff\xff\xff"},
                {"\x92\x49\x24"}, {"\x49\x24\x92"}, {"\x24\x92\x49"},
                {"\x6d\xb6\xdb"}, {"\xb6\xdb\x6d"}, {"\xdb\x6d\xb6"}
        };
	
        for(i = 0; i < buffer_size / 3; ++i) {
                memcpy(buffer, write_modes[turn], 3);
                buffer += 3;
        }
}

static int wipe(const char *device, unsigned int from, unsigned int to)
{
	int devfd;
	char *buffer;
	unsigned int i;
	unsigned int bufLen = (to - from) * SECTOR_SIZE;
	int r = 0;
	
	devfd = open(device, O_RDWR | O_DIRECT | O_SYNC);
	if(devfd == -1) {
		set_error(_("Can't open device %s"), device);
		return -EINVAL;
	}

	buffer = (char *) malloc(bufLen);
	if(!buffer) return -ENOMEM;

	for(i = 0; i < 39; ++i) {
		if     (i >=  0 && i <  5) getRandom(buffer, bufLen);
		else if(i >=  5 && i < 32) wipeSpecial(buffer, bufLen, i - 5);
		else if(i >= 32 && i < 38) getRandom(buffer, bufLen);
		else if(i >= 38 && i < 39) memset(buffer, 0xFF, bufLen);

		if(write_lseek_blockwise(devfd, buffer, bufLen, from * SECTOR_SIZE) < 0) {
			r = -EIO;
			break;
		}
	}

	free(buffer);
	close(devfd);

	return r;
}

int LUKS_del_key(const char *device, unsigned int keyIndex)
{
	struct luks_phdr hdr;
	unsigned int startOffset, endOffset, stripesLen;
	int r;
	
	r = LUKS_read_phdr(device, &hdr);
	if(r != 0) {
		/* placeholder */
	} else if(keyIndex >= LUKS_NUMKEYS || hdr.keyblock[keyIndex].active != LUKS_KEY_ENABLED) {
		set_error(_("Key %d not active. Can't wipe.\n"), keyIndex);
		r = -1;
	} else {
		/* secure deletion of key material */
		startOffset = hdr.keyblock[keyIndex].keyMaterialOffset;
		stripesLen = hdr.keyBytes * hdr.keyblock[keyIndex].stripes;
		endOffset = startOffset + div_round_up(stripesLen, SECTOR_SIZE);

		r = wipe(device, startOffset, endOffset);
		if(r == 0) {
			/* mark the key as inactive in header */
			hdr.keyblock[keyIndex].active = LUKS_KEY_DISABLED;
			r = LUKS_write_phdr(device, &hdr);
		}
	}

	return r;
}

int LUKS_is_last_keyslot(const char *device, unsigned int keyIndex)
{
	struct luks_phdr hdr;
	unsigned int i;
	int r;
	
	r = LUKS_read_phdr(device, &hdr);
	if(r < 0) return r;
	
	for(i = 0; i < LUKS_NUMKEYS; i++) {
		if(i != keyIndex && hdr.keyblock[i].active == LUKS_KEY_ENABLED)
			return 0;
	}
	return 1;
}


int LUKS_benchmarkt_iterations()
{
	return PBKDF2_performance_check()/2;
}

int LUKS_device_ready(const char *device, int mode)
{
        int devfd = open(device, mode | O_DIRECT | O_SYNC);
        if(devfd < 0) {
                set_error(_("Can't open device for %s%saccess: %s\n"), (mode & O_EXCL)?_("exclusive "):"", (mode & O_RDWR)?_("writable "):"read-only ", device);
                return 0;
        }
        close(devfd);
        return 1;
}

// Local Variables:
// c-basic-offset: 8
// indent-tabs-mode: nil
// End: