1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- Created by texi2html 1.64 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Olaf Bachmann <obachman@mathematik.uni-kl.de>
Send bugs and suggestions to <texi2html@mathematik.uni-kl.de>
-->
<HTML>
<HEAD>
<TITLE>Crystal Space: Texture Mapping Together</TITLE>
<META NAME="description" CONTENT="Crystal Space: Texture Mapping Together">
<META NAME="keywords" CONTENT="Crystal Space: Texture Mapping Together">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="texi2html 1.64">
</HEAD>
<BODY LANG="" BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#800080" ALINK="#FF0000">
<A NAME="SEC384"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_177.html#SEC383"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_179.html#SEC385"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_173.html#SEC376"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_174.html#SEC377"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_181.html#SEC390"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="index.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_285.html#SEC711">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<HR SIZE=1>
<H4> 7.6.6.4 Bringing it All Together </H4>
<!--docid::SEC384::-->
<P>
Using all this information we have enough to correctly map a texture on
screen. Let's disregard clipping for the moment and just explain all the
steps from the original object space polygon until the final texture mapped
polygon on screen.
</P><P>
We will assume that the polygon (and the texture) has already been transformed
from object to world space. So we start with a world space polygon, <EM>Pw</EM>.
</P><P>
First all vertices of the polygon are transformed to camera space (note that
in Crystal Space this is done earlier since vertices are shared for one
sector. This text ignores that and just concentrates on one polygon) with the
equation:
</P><P>
<BLOCKQUOTE>
<EM>Vc = Mwc * (Vw - Vwc)</EM>
</BLOCKQUOTE>
<P>
(Also note that at this point you could discard vertices because they are
behind the view plane (or <EM>Z = 0</EM>). We assume here that the polygon is
completely visible so this does not matter.)
</P><P>
At this point we do perspective correction on the polygon. This means that we
create a new 2-dimensional polygon with vertices <EM>Vs</EM> (in screen space)
using the following equations:
</P><P>
<BLOCKQUOTE>
<EM>Vs.x = (F * Vc.x) / Vc.z</EM><BR>
<EM>Vs.y = (F * Vc.y) / Vc.z</EM>
</BLOCKQUOTE>
<P>
Now we create the matrix to transform camera space to texture space starting
from the matrix to transform world space to texture space. Given:
</P><P>
<BLOCKQUOTE>
<EM>Vc = Mwc * (Vw - Vwc)</EM>
</BLOCKQUOTE>
<P>
We calculate (using the inverse matrix of <EM>Mwc</EM>):
</P><P>
<BLOCKQUOTE>
<TABLE>
<TR><TD><EM>Mcw * Vc + Vwc = Vw</EM> </TD><TD> (Equation 1)</TD>
</TR></TABLE>
</BLOCKQUOTE>
<P>
Given also:
</P><P>
<BLOCKQUOTE>
<TABLE>
<TR><TD><EM>Vt = Mwt * (Vw - Vwt)</EM> </TD><TD> (Equation 2)</TD>
</TR></TABLE>
</BLOCKQUOTE>
<P>
We substitute (1) into (2) to get:
</P><P>
<BLOCKQUOTE>
<EM>Vt = Mwt * (Mcw * Vc + Vwc - Vwt)</EM>
</BLOCKQUOTE>
<P>
This can also be re-written as:
</P><P>
<BLOCKQUOTE>
<EM>Vt = Mwt * (Mcw * Vc + Mcw * Mwc * (Vwc - Vwt))</EM>
</BLOCKQUOTE>
<P>
Which simplifies to:
</P><P>
<BLOCKQUOTE>
<EM>Vt = Mwt * Mcw * (Vc + Mwc * (Vwc - Vwt))</EM>
</BLOCKQUOTE>
<P>
If we say that:
</P><P>
<BLOCKQUOTE>
<EM>Mct = Mwt * Mcw</EM><BR>
<EM>Vct = Mwc * (Vwt - Vwc)</EM>
</BLOCKQUOTE>
<P>
We then get:
</P><P>
<BLOCKQUOTE>
<EM>Vt = Mct * (Vc - Vct)</EM>
</BLOCKQUOTE>
<P>
And this is the equation transforming camera space to texture space.
</P><P>
Then we need to transform the world space plane equation to a camera space
plane equation. This we do as follows.
</P><P>
The plane vector
<EM>Nw = (Aw,Bw,Cw)</EM>
is transformed to
<EM>Nc = (Ac,Bc,Cc)</EM>
using the following equation:
</P><P>
<BLOCKQUOTE>
<EM>Nc = Mwc * Nw</EM>
</BLOCKQUOTE>
<P>
Using the first vertex of the polygon in camera space coordinates (<EM>Vc</EM>)
we then calculate <EM>Dc</EM> as follows.
</P><P>
Since the plane equation in camera space is equal to:
</P><P>
<BLOCKQUOTE>
<EM>Ac * Vc.x + Bc * Vc.y + Cc * Vc.z + Dc = 0</EM>
</BLOCKQUOTE>
<P>
For every vertex <EM>Vc</EM> on the polygon we can calculate the missing <EM>Dc</EM>
as follows:
</P><P>
<BLOCKQUOTE>
<EM>Dc = -Ac * Vc.x - Bc * Vc.y - Cc * Vc.z</EM>
</BLOCKQUOTE>
<P>
Using this information (the polygon in perspective corrected 2D coordinates,
the transformation from camera space to texture space and the plane equation
in camera space) we can draw the polygon on the screen and perform correct
texture mapping. This happens as follows.
</P><P>
From the perspective correction equations:
</P><P>
<BLOCKQUOTE>
<EM>Vs.x = (F * Vc.x) / Vc.z</EM><BR>
<EM>Vs.y = (F * Vc.y) / Vc.z</EM>
</BLOCKQUOTE>
<P>
We can invert them to:
</P><P>
<BLOCKQUOTE>
<TABLE>
<TR><TD><EM>Vc.x = (Vs.x * Vc.z) / F</EM> </TD><TD> (Equation 3)</TD>
</TR>
<TR><TD><EM>Vc.y = (Vs.y * Vc.z) / F</EM> </TD><TD> (Equation 4)</TD>
</TR></TABLE>
</BLOCKQUOTE>
<P>
We can now substitute (3) and (4) into the following equation:
</P><P>
<BLOCKQUOTE>
<EM>Ac * Vc.x + Bc * Vc.y + Cc * Vc.z + Dc = 0</EM>
</BLOCKQUOTE>
<P>
And get:
</P><P>
<BLOCKQUOTE>
<EM>(Ac * Vs.x * Vc.z) / F + (Bc * Vs.y * Vc.z) / F + (F * Cc * Vc.z) / F = -Dc</EM>
</BLOCKQUOTE>
<P>
Or:
</P><P>
<BLOCKQUOTE>
<EM>-(Ac * Vs.x) / (F*Dc) - (Bc * Vs.y) / (F*Dc) - Cc / (F*Dc) = 1 / Vc.z</EM>
</BLOCKQUOTE>
<P>
This equation is very important. From this it follows that <EM>1/z</EM> linear
is in screen space and this can be used for perspective correct texture
mapping. Lets define the following three new variables:
</P><P>
<BLOCKQUOTE>
<EM>M = -Ac / (F * Dc)</EM><BR>
<EM>N = -Bc / (F * Dc)</EM><BR>
<EM>O = -Cc / Dc</EM>
</BLOCKQUOTE>
<P>
So the <EM>1/z</EM> equation in linear screen space is then written as:
</P><P>
<BLOCKQUOTE>
<TABLE>
<TR><TD><EM>1 / Vc.z = M * Vs.x + N * Vs.y + O</EM> </TD><TD> (Equation 5)</TD>
</TR></TABLE>
</BLOCKQUOTE>
<P>
So now we can easily calculate <EM>1/z</EM> at every point in screen space. But
we also need to calculate the texture coordinates (<EM>u,v</EM>) or <EM>Vt</EM>.
Let's call the individual fields of the transformation matrix <EM>Mct</EM> as
follows:
</P><P>
<TABLE><tr><td> </td><td class=example><pre> / m11 m12 m13 \
Mct = | m21 m22 m23 | Vct = (v1 v2 v3)
\ m31 m32 m33 /
</pre></td></tr></table></P><P>
For simplicity let's use <EM>u</EM> for <EM>Vt.u</EM> and <EM>v</EM> for <EM>Vt.v</EM>
(the <EM>u,v</EM> texture coordinates). Let us also use <EM>x</EM>, <EM>y</EM>,
and <EM>z</EM> for <EM>Vc.x</EM>, <EM>Vc.y</EM>, <EM>Vc.z</EM> respectively.
</P><P>
Then from:
</P><P>
<BLOCKQUOTE>
<EM>Vt = Mct * (Vc - Vct)</EM>
</BLOCKQUOTE>
<P>
We get:
</P><P>
<BLOCKQUOTE>
<EM>u = m11 * (x - v1) + m12 * (y - v2) + m13 * (z - v3)</EM><BR>
<EM>v = m21 * (x - v1) + m22 * (y - v2) + m23 * (z - v3)</EM>
</BLOCKQUOTE>
<P>
This can be rewritten as:
</P><P>
<BLOCKQUOTE>
<EM>u = m11 * x + m12 * y + m13 * z - (m11 * v1 + m12 * v2 + m13 * v3)</EM><BR>
<EM>v = m21 * x + m22 * y + m23 * z - (m21 * v1 + m22 * v2 + m23 * v3)</EM>
</BLOCKQUOTE>
<P>
To simplify let's introduce a couple new variables to take the place of
complicated expressions from the above equations.
</P><P>
<BLOCKQUOTE>
<EM>P = - (m11 * v1 + m12 * v2 + m13 * v3)</EM><BR>
<EM>Q = - (m21 * v1 + m22 * v2 + m23 * v3)</EM>
</BLOCKQUOTE>
<P>
And we have:
</P><P>
<BLOCKQUOTE>
<EM>u = m11 * x + m12 * y + m13 * z + P</EM><BR>
<EM>v = m21 * x + m22 * y + m23 * z + Q</EM>
</BLOCKQUOTE>
<P>
As earlier, we substitute the inverse perspective correction equations (3)
and (4) into the previous equations and we get:
</P><P>
<BLOCKQUOTE>
<EM>u = (m11 * Vs.x * z) / F + (m12 * Vs.y * z) / F + m13 * z + P</EM><BR>
<EM>v = (m21 * Vs.x * z) / F + (m22 * Vs.y * z) / F + m23 * z + Q</EM>
</BLOCKQUOTE>
<P>
And then rewrite as:
</P><P>
<BLOCKQUOTE>
<EM>u / z = (m11 * Vs.x) / F + (m12 * Vs.y) / F + m13 + P / z</EM><BR>
<EM>v / z = (m21 * Vs.x) / V + (m22 * Vs.y) / F + m23 + Q / z</EM>
</BLOCKQUOTE>
<P>
Substitute the linear <EM>1/z</EM> equation (5) into this to get:
</P><P>
<BLOCKQUOTE>
<EM>u / z = (m11 * Vs.x) / F + (m12 * Vs.y) / F + m13 + P * (M * Vs.x + N * Vs.y + O)</EM><BR>
<EM>v / z = (m21 * Vs.x) / F + (m22 * Vs.y) / F + m23 + Q * (M * Vs.x + N * Vs.y + O)</EM>
</BLOCKQUOTE>
<P>
Rewrite as:
</P><P>
<BLOCKQUOTE>
<EM>u / z = (m11 * Vs.x + m12 * Vs.y + F * (m13 + P * (M*Vs.x + N*Vs.y + O)) / F</EM><BR>
<EM>v / z = (m21 * Vs.x + m22 * Vs.y + F * (m23 + Q * (M*Vs.x + N*Vs.y + O)) / F</EM>
</BLOCKQUOTE>
<P>
And finally rewrite as:
</P><P>
<BLOCKQUOTE>
<EM>u / z = (m11 / F + P * M) * Vs.x + (m12 / F + P * N) * Vs.y + (m13 + P * O)</EM><BR>
<EM>v / z = (m21 / F + Q * M) * Vs.x + (m22 / F + Q * N) * Vs.y + (m23 + Q * O)</EM>
</BLOCKQUOTE>
<P>
These are again two important equations because they state that <EM>u/z</EM> and
<EM>v/z</EM> are also linear in screen space. Using this we can easily
calculate (<EM>u,v</EM>) at every screen space point.
</P><P>
Now let's define:
</P><P>
<BLOCKQUOTE>
<EM>J1 = m11 / F + P * M</EM><BR>
<EM>J2 = m12 / F + P * N</EM><BR>
<EM>J3 = m13 + P * O</EM><BR>
<EM>K1 = m21 / F + Q * M</EM><BR>
<EM>K2 = m22 / F + Q * N</EM><BR>
<EM>K3 = m23 + Q * O</EM>
</BLOCKQUOTE>
<P>
Then we have the following three equations:
</P><P>
<BLOCKQUOTE>
<EM>1 / z = M * Vs.x + N * Vs.y + O</EM><BR>
<EM>u / z = J1 * Vs.x + J2 * Vs.y + J3</EM><BR>
<EM>v / z = K1 * Vs.x + K2 * Vs.y + K3</EM>
</BLOCKQUOTE>
<P>
With these three important equations we can do all texture mapping we want.
With the first equation we can calculate <EM>1/z</EM>. This is useful for
Z-buffering and also for calculating (<EM>u,v</EM>) from the two other
equations.
</P><P>
<A NAME="Texture Mapping Instructions"></A>
<HR SIZE=1>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_177.html#SEC383"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_179.html#SEC385"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_173.html#SEC376"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_174.html#SEC377"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_181.html#SEC390"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="index.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_285.html#SEC711">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="cs_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<BR>
<FONT SIZE="-1">
This document was generated
using <A HREF="http://www.mathematik.uni-kl.de/~obachman/Texi2html
"><I>texi2html</I></A>
</BODY>
</HTML>
|