1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/*
Copyright (C) 1998 by Jorrit Tyberghein
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __CSENDIAN_H__
#define __CSENDIAN_H__
#include <math.h>
#include "cstypes.h"
#include "qint.h"
/*
* This is a bit of overkill but if you're sure your CPU doesn't require
* strict alignment add your CPU to the !defined below to get slightly
* smaller and faster code in some cases.
*/
#if !defined (PROC_X86)
# define PROC_NEEDS_STRICT_ALIGNMENT
#endif
struct swap_4
{
unsigned char b1, b2, b3, b4;
};
#ifdef CS_BIG_ENDIAN
# define big_endian_long(x) x
# define big_endian_short(x) x
# define big_endian_float(x) x
#else
/// Convert a long from big-endian to machine format
static inline uint32 big_endian_long (uint32 l)
{ return (l >> 24) | ((l >> 8) & 0xff00) | ((l << 8) & 0xff0000) | (l << 24); }
/// Convert a short from big-endian to machine format
static inline uint16 big_endian_short (uint16 s)
{ return (s >> 8) | (s << 8); }
/// Convert a big-endian floating-point number to machine format
//@@WARNING: Should be removed -- use float2long instead
static inline float big_endian_float (float f)
{
unsigned char tmp;
swap_4 *pf = (swap_4 *)&f;
tmp = pf->b1; pf->b1 = pf->b4; pf->b4 = tmp;
tmp = pf->b2; pf->b2 = pf->b3; pf->b3 = tmp;
return f;
}
#endif // CS_BIG_ENDIAN
#ifdef CS_LITTLE_ENDIAN
# define little_endian_long(x) x
# define little_endian_short(x) x
# define little_endian_float(x) x
#else
/// Convert a long from little-endian to machine format
static inline uint32 little_endian_long (uint32 l)
{ return (l >> 24) | ((l >> 8) & 0xff00) | ((l << 8) & 0xff0000) | (l << 24); }
/// Convert a short from little-endian to machine format
static inline uint16 little_endian_short (uint16 s)
{ return (s >> 8) | (s << 8); }
/// Convert a little-endian floating-point number to machine format
static inline float little_endian_float (float f)
{
unsigned char tmp;
swap_4 *pf = (swap_4 *)&f;
tmp = pf->b1; pf->b1 = pf->b4; pf->b4 = tmp;
tmp = pf->b2; pf->b2 = pf->b3; pf->b3 = tmp;
return f;
}
#endif // CS_LITTLE_ENDIAN
/*
To be able to painlessly transfer files betwen platforms, we should
avoid using native floating-point format. Here are a couple of routines
that are guaranteed to work on all platforms.
The floating point is converted to a fixed 1.7.25 bits format
(one bit sign, 7 bits exponent, 25 bits mantissa) and back,
so that we can binary store floating-point number without
cross-platform problems. If you wonder why 1+7+25 = 33 while we
only have 32 bits, we'll ommit the most significant bit of mantissa
since it is always 1 (we use normalized numbers). This increases the
precision twice.
*/
/// Convert a float to a cross-platform 32-bit format (no endianess adjustments!)
static inline long float2long (float f)
{
int exp;
long mant = QRound (frexp (f, &exp) * 0x1000000);
long sign = mant & 0x80000000;
if (mant < 0) mant = -mant;
if (exp > 63) exp = 63; else if (exp < -64) exp = -64;
return sign | ((exp & 0x7f) << 24) | (mant & 0xffffff);
}
/// Convert a 32-bit cross-platform float to native format (no endianess adjustments!)
static inline float long2float (long l)
{
int exp = (l >> 24) & 0x7f;
if (exp & 0x40) exp = exp | ~0x7f;
float mant = float (l & 0x00ffffff) / 0x1000000;
if (l & 0x80000000) mant = -mant;
return (float) ldexp (mant, exp);
}
/**
* The following routines are used for converting floating-point numbers
* into 16-bit shorts and back. This is useful for low-precision data.
* They use the 1.4.12 format. The range of numbers that can be represented
* in this format is from 2^-8 to 2^7. The precision for numbers near to
* 2^-8 (0.00390625) is near 0.000001, for numbers near 2^7 (128) is near 0.03.
*/
/// Convert a float to a cross-platform 16-bit format (no endianess adjustments!)
static inline short float2short (float f)
{
int exp;
long mant = QRound (frexp (f, &exp) * 0x1000);
long sign = mant & 0x8000;
if (mant < 0) mant = -mant;
if (exp > 7) mant = 0x7ff, exp = 7; else if (exp < -8) mant = 0, exp = -8;
return sign | ((exp & 0xf) << 11) | (mant & 0x7ff);
}
/// Convert a 16-bit cross-platform float to native format (no endianess adjustments!)
static inline float short2float (short s)
{
int exp = (s >> 11) & 0xf;
if (exp & 0x8) exp = exp | ~0xf;
float mant = float ((s & 0x07ff) | 0x0800) / 0x1000;
if (s & 0x8000) mant = -mant;
return (float) ldexp (mant, exp);
}
/// Swap the bytes in a uint32 value.
static inline uint32 convert_endian (uint32 l)
{ return little_endian_long (l); }
/// Swap the bytes in a int32 value.
static inline int32 convert_endian (int32 l)
{ return little_endian_long (l); }
/// Swap the bytes in a int16 value.
static inline int16 convert_endian (int16 s)
{ return little_endian_short (s); }
/// Swap the bytes in a uint16 value.
static inline uint16 convert_endian (uint16 s)
{ return little_endian_short (s); }
/// Swap the bytes in a float value.
static inline float convert_endian (float f)
{ return little_endian_float (f); }
/// Read a little-endian short from address
inline uint16 get_le_short (void *buff)
{
#ifdef PROC_NEEDS_STRICT_ALIGNMENT
uint16 s; memcpy (&s, buff, sizeof (s));
return little_endian_short (s);
#else
return little_endian_short (*(uint16 *)buff);
#endif
}
/// Read a little-endian long from address
inline uint32 get_le_long (void *buff)
{
#ifdef PROC_NEEDS_STRICT_ALIGNMENT
uint32 l; memcpy (&l, buff, sizeof (l));
return little_endian_long (l);
#else
return little_endian_long (*(uint32 *)buff);
#endif
}
/// Read a little-endian 32-bit float from address
inline float get_le_float32 (void *buff)
{ uint32 l = get_le_long (buff); return long2float (l); }
/// Read a little-endian 16-bit float from address
inline float get_le_float16 (void *buff)
{ uint16 s = get_le_short (buff); return short2float (s); }
/// Set a little-endian short on a address
inline void set_le_short (void *buff, uint16 s)
{
#ifdef PROC_NEEDS_STRICT_ALIGNMENT
s = little_endian_short (s);
memcpy (buff, &s, sizeof (s));
#else
*((uint16 *)buff) = little_endian_short (s);
#endif
}
/// Set a little-endian long on a address
inline void set_le_long (void *buff, uint32 l)
{
#ifdef PROC_NEEDS_STRICT_ALIGNMENT
l = little_endian_long (l);
memcpy (buff, &l, sizeof (l));
#else
*((uint32 *)buff) = little_endian_long (l);
#endif
}
/// Set a little-endian 32-bit float on a address
inline void set_le_float32 (void *buff, float f)
{ set_le_long (buff, float2long (f)); }
/// Set a little-endian 16-bit float on a address
inline void set_le_float16 (void *buff, float f)
{ set_le_short (buff, float2short (f)); }
#endif // __CSENDIAN_H__
|