1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
import functools
from itertools import chain
import operator
import numpy as np
from numpy.lib.stride_tricks import as_strided
def prod(x):
"""Product of a list/tuple of numbers; ~40x faster vs np.prod for Python tuples"""
if len(x) == 0:
return 1
return functools.reduce(operator.mul, x)
def to_2d(arr: np.ndarray, axis: int) -> np.ndarray:
"""Transforms the shape of N-D array to 2-D NxM array
The function transforms N-D array to 2-D NxM array along given axis,
where N is dimension and M is the nember of elements.
The function does not create a copy.
Parameters
----------
arr : np.array
N-D array
axis : int
Axis that will be used for transform array shape
Returns
-------
arr2d : np.ndarray
2-D NxM array view
Raises
------
ValueError : axis is out of array axes
See Also
--------
from_2d
Examples
--------
.. code-block:: python
>>> shape = (2, 3, 4)
>>> arr = np.arange(1, np.prod(shape)+1).reshape(shape)
>>> arr_2d = to_2d(arr, axis=1)
>>> print(arr)
[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
[[13 14 15 16]
[17 18 19 20]
[21 22 23 24]]]
>>> print(arr_2d)
[[ 1 5 9]
[ 2 6 10]
[ 3 7 11]
[ 4 8 12]
[13 17 21]
[14 18 22]
[15 19 23]
[16 20 24]]
"""
arr = np.asarray(arr)
axis = arr.ndim + axis if axis < 0 else axis
if axis >= arr.ndim: # pragma: no cover
raise ValueError(f'axis {axis} is out of array axes {arr.ndim}')
tr_axes = list(range(arr.ndim))
tr_axes.pop(axis)
tr_axes.append(axis)
new_shape = (np.prod(arr.shape) // arr.shape[axis], arr.shape[axis])
return arr.transpose(tr_axes).reshape(new_shape)
def umv_coeffs_to_canonical(arr: np.ndarray, pieces: int):
"""
Parameters
----------
arr : array
The 2-d array with shape (n, m) where:
n -- the number of spline dimensions (1 for univariate)
m -- order * pieces
pieces : int
The number of pieces
Returns
-------
arr_view : array view
The 2-d or 3-d array view with shape (k, p) or (k, p, n) where:
k -- spline order
p -- the number of spline pieces
n -- the number of spline dimensions (multivariate case)
"""
ndim: int = arr.shape[0]
order: int = arr.shape[1] // pieces
shape: tuple[int, ...]
strides: tuple[int, ...]
if ndim == 1:
shape = (order, pieces)
strides = (arr.strides[1] * pieces, arr.strides[1])
else:
shape = (order, pieces, ndim)
strides = (arr.strides[1] * pieces, arr.strides[1], arr.strides[0])
return as_strided(arr, shape=shape, strides=strides)
def umv_coeffs_to_flatten(arr: np.ndarray):
"""
Parameters
----------
arr : array
The 2-d or 3-d array with shape (k, m) or (k, m, n) where:
k -- the spline order
m -- the number of spline pieces
n -- the number of spline dimensions (multivariate case)
Returns
-------
arr_view : array view
The array 2-d view with shape (1, k * m) or (n, k * m)
"""
if arr.ndim == 2:
arr_view = arr.ravel()[np.newaxis]
elif arr.ndim == 3:
shape = (arr.shape[2], prod(arr.shape[:2]))
strides = arr.strides[:-3:-1]
arr_view = as_strided(arr, shape=shape, strides=strides)
else: # pragma: no cover
raise ValueError(f'The array ndim must be 2 or 3, but given array has ndim={arr.ndim}.')
return arr_view
def ndg_coeffs_to_canonical(arr: np.ndarray, pieces: tuple[int, ...]) -> np.ndarray:
"""Returns array canonical view for given n-d grid coeffs flatten array
Creates n-d array canonical view with shape (k0, ..., kn, p0, ..., pn) for given
array with shape (m0, ..., mn) and pieces (p0, ..., pn).
Parameters
----------
arr : array
The input array with shape (m0, ..., mn)
pieces : tuple
The number of pieces (p0, ..., pn)
Returns
-------
arr_view : array view
The canonical view for given array with shape (k0, ..., kn, p0, ..., pn)
"""
if arr.ndim > len(pieces):
return arr
shape = tuple(sz // p for sz, p in zip(arr.shape, pieces)) + pieces
strides = tuple(st * p for st, p in zip(arr.strides, pieces)) + arr.strides
return as_strided(arr, shape=shape, strides=strides)
def ndg_coeffs_to_flatten(arr: np.ndarray):
"""Creates flatten array view for n-d grid coeffs canonical array
For example for input array (4, 4, 20, 30) will be created the flatten view (80, 120)
Parameters
----------
arr : array
The input array with shape (k0, ..., kn, p0, ..., pn) where:
``k0, ..., kn`` -- spline orders
``p0, ..., pn`` -- spline pieces
Returns
-------
arr_view : array view
Flatten view of array with shape (m0, ..., mn)
"""
if arr.ndim == 2:
return arr
ndim = arr.ndim // 2
axes = tuple(chain.from_iterable(zip(range(ndim), range(ndim, arr.ndim))))
shape = tuple(prod(arr.shape[i::ndim]) for i in range(ndim))
return arr.transpose(axes).reshape(shape)
|