1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
'''
Copyright 2005 by Michael Gogins.
A concise geometric approach to common operations
in pragmatic music theory,
for use in score generating algorithms.
When run as a standalone program,
displays a model of the voice-leading space
for trichords and can orbit a chord through
the space, playing the results using Csound.
Voice-leading space is an orbifold of chords
with one dimension per voice, voices ordered by pitch,
pitch measured in tones per octave,
and a modulus equal to the range of the voices.
I.e., it is a complete Tonnetz.
Root progressions are motions more or less
up and down the 'columns' of identically
structured chords. The closest voice-leadings are
between the closest chords in the space.
The 'best' voice-leadings are closest first
by 'smoothness,' and then by 'parsimony.'
See Dmitri Tymoczko,
_The Geometry of Musical Chords_, 2005
(Princeton University).
This script also demonstrates the triadic
neo-Riemannian transformations
of leading-tone exchange (press l),
parallel (press p),
relative (press r),
and dominant (press d) progression.
See Alissa S. Crans, Thomas M. Fiore, and Raymon Satyendra,
_Musical Actions of Dihedral Groups_, 2008
(arXiv:0711.1873v2).
You can do plain old transpositions
by pressing 1, 2, 3, 4, 5, or 6.
You can move each voice independently with the arrow keys:
up arrow to move voice 1 up 1 semitone (shift for down),
right arrow to move voice 2 in the same way,
down arrow to move voice 3.
'''
print __doc__
import gc
import operator
import sys
import traceback
import time
import random
import sets
import threading
import copy
import collections
from visual import *
from numpy import *
#import Image
#import ImageGrab
#import ImageOps
import csnd6
import CsoundAC
'''
Represents operations on chords in a voice-leading orbifold.
Chords can actually have more dimensions than voices,
but voice-leading operations affect only the specified number of voices,
which can be a lower subspace of the orbifold.
This is to enable using the lower subspace of chords to represent pitches,
and the higher subspace to represent other properties of music;
e.g. [0:4] can be a tetrachord, [4:8] durations, [8:12] loudnesses, and so on.
'''
class Tonnetz(object):
def __init__(self, voiceCount=3, cubeOctaveCount=2,octaveCount=3, tonesPerOctave=12, isCube=False, isPrism=False, isNormalPrism = False, debug=False):
self.N = voiceCount
self.octaveCount = octaveCount
self.tonesPerOctave = tonesPerOctave
self.isCube = isCube
self.isPrism = isPrism
self.isNormalPrism = isNormalPrism
self.debug = debug
self.R = self.tonesPerOctave * self.octaveCount
self.NR = self.N * self.R
self.cubeOctaveCount = cubeOctaveCount
self.cubeTessitura = self.tonesPerOctave * self.cubeOctaveCount
self.cubeRadius = 0.07
self.prismRadius = self.cubeRadius * 2.0
self.normalPrismRadius = self.prismRadius #* 2.0
def getTessitura(self):
if self.isCube:
return self.cubeTessitura
else:
return self.R
def sort(self, chord):
c = array(chord, 'd').copy()
d = c[0:self.N]
d.sort()
c[0:self.N] = d
return c
'''
Move 1 voice.
'''
def move(self, chord_, voice, interval):
chord = list(chord_)
print 'Move %d by %f.' % (voice, interval)
chord[voice] = chord[voice] + interval
chord = tuple(self.bounceInside(chord))
return chord
'''
Do a root progression by tranposition.
'''
def pT(self, chord, interval):
chord = self.firstInversion(chord)
print 'Transpose by %f.' % interval
for i in xrange(3):
chord[i] = chord[i] + interval
chord = tuple(self.bounceInside(chord))
return chord
'''
Perform the leading tone exchange neo-Riemannian transformation.
'''
def nrL(self, chord):
print 'Leading-tone exchange transformation.'
chord = self.firstInversion(chord)
z1 = self.zeroFormFirstInversion(chord)
if z1[1] == 4.0:
chord[0] = chord[0] - 1
elif z1[1] == 3.0:
chord[2] = chord[2] + 1
chord = tuple(self.keepInside(chord))
return chord
'''
Perform the parallel neo-Riemannian transformation.
'''
def nrP(self, chord):
print 'Parallel transformation.'
chord = self.firstInversion(chord)
z1 = self.zeroFormFirstInversion(chord)
if z1[1] == 4.0:
chord[1] = chord[1] - 1
elif z1[1] == 3.0:
chord[1] = chord[1] + 1
chord = tuple(self.keepInside(chord))
return chord
'''
Perform the relative neo-Riemannian transformation.
'''
def nrR(self, chord):
print 'Relative transformation.'
chord = self.firstInversion(chord)
z1 = self.zeroFormFirstInversion(chord)
if z1[1] == 4.0:
chord[2] = chord[2] + 2
elif z1[1] == 3.0:
chord[0] = chord[0] - 2
chord = tuple(self.keepInside(chord))
return chord
'''
Perform the dominant neo-Riemannian transformation.
'''
def nrD(self, chord):
print 'Dominant transformation.'
chord = self.firstInversion(chord)
chord[0] = chord[0] - 7
chord[1] = chord[1] - 7
chord[2] = chord[2] - 7
chord = tuple(self.keepInside(chord))
return chord
def tones(self, chord):
c = array(chord, 'd').copy()
for i in xrange(self.N):
c[i] = c[i] % self.tonesPerOctave
return self.sort(c)
def zeroFormModulus(self, chord):
c = array(chord, 'd').copy()
for i in xrange(self.N):
c[i] = c[i] % self.tonesPerOctave
m = min(c)
for i in xrange(self.N):
c[i] = c[i] - m
return c
def zeroForm(self, chord):
c = array(chord).copy()
m = min(c[:self.N])
for i in xrange(self.N):
c[i] = c[i] - m
return c
def range(self, chord):
c = chord[0:self.N]
return max(c) - min(c)
#c = self.sort(chord).copy()
#return c[self.N-1] - c[0]
def firstInversion(self, chord):
inversions = self.rotations(chord)
inversionDistances = {}
origin = []
for i in xrange(self.N):
origin.append(0.)
for inversion in inversions:
zi = self.zeroForm(inversion)
#z = float(sum(zi)) / float(self.N)
d = self.euclidean(zi, origin)
if self.debug:
print 'distance %f zeroform %s inversion %s' % (d, zi, inversion)
inversionDistances[d] = inversion
return inversionDistances[min(inversionDistances.keys())]
def zeroFormFirstInversion(self, chord):
return self.zeroForm(self.firstInversion(chord))
def equalTones(self, a, b):
a = self.tones(a)
b = self.tones(b)
if a == b:
return True
else:
return False
def inversions_(self, tones, iterating_chord, voice, inversions):
if voice >= self.N:
return
if self.isPrism:
beginning = -self.getTessitura() * 2
end = self.getTessitura() * 2
elif self.isCube:
beginning = -self.getTessitura()
end = self.getTessitura()
p = beginning
increment = 1.0
while p < end:
if self.pitchclass(p) == tones[voice]:
iterating_chord[voice] = p
increment = self.tonesPerOctave
si = self.sort(iterating_chord)
if self.isInside(si, self.getTessitura()):
ic = tuple(si.tolist())
inversions.add(ic)
self.inversions_(tones, iterating_chord, voice + 1, inversions)
p = p + increment
def inversions(self, chord):
inversions = sets.Set()
tones = self.tones(chord)
iterating_chords = self.rotations(tones)
for iterating_chord in iterating_chords:
voice = 0
self.inversions_(tones, iterating_chord, voice, inversions)
l = list(inversions)
for i in xrange(len(l)):
l[i] = array(l[i])
return l
def euclidean(self, a, b):
ss = 0.0
for i in xrange(self.N):
ss += ((a[i] - b[i]) ** 2.0)
return math.sqrt(ss)
def voiceleading(self, a, b):
v = []
for i in xrange(self.N):
v.append(b[i] - a[i])
return v
def areParallel(self, a, b):
return CsoundAC.areParallel(a,b)
## if self.debug:
## v = self.voiceleading(a, b)
## for i in xrange(self.N):
## if v.count(v[i]) > 1:
## for j in xrange(self.N):
## if i != j:
## if (math.fabs(a[i] - a[j]) == 7) and (math.fabs(b[i] - b[j]) == 7):
## if self.debug:
## print a, b, v, 'parallel fifth'
## return True
## return false
def smoothness(self, a, b):
L1 = 0.0
for i in xrange(self.N):
L1 += math.fabs(b[i] - a[i])
return L1
def smoother(self, source, destination1, destination2, avoidParallels=False):
s1 = self.smoothness(source, destination1)
s2 = self.smoothness(source, destination2)
if avoidParallels:
if self.areParallel(source, destination1):
return destination2
if self.areParallel(source, destination2):
return destination1
if s1 <= s2:
return destination1
else:
return destination2
def simpler(self, source, destination1, destination2, avoidParallels=False):
v1 = self.voiceleading(source, destination1)
v1 = sort(v1)
v2 = self.voiceleading(source, destination2)
v2 = sort(v2)
for i in xrange(self.N - 1, -1, -1):
if v1[i] < v2[i]:
return destination1
if v2[i] < v1[i]:
return destination2
return destination1
def closer(self, source, destination1, destination2, avoidParallels=False):
if avoidParallels:
if self.areParallel(source, destination1):
return destination2
if self.areParallel(source, destination2):
return destination1
s1 = self.smoothness(source, destination1)
s2 = self.smoothness(source, destination2)
if s1 < s2:
return destination1
if s1 > s2:
return destination2
return self.simpler(source, destination1, destination2, avoidParallels)
def closest(self, source, destinations, avoidParallels=False):
d = destinations[0]
for i in xrange(1, len(destinations)):
d = self.closer(source, d, destinations[i], avoidParallels)
return d
def isFirstInversion(self, chord):
return tuple(self.zeroForm(chord)) == tuple(self.zeroFormFirstInversion(chord))
def rotate(self, a, n=1):
l = a.tolist()
for i in xrange(n):
tail = l.pop(self.N - 1)
l.insert(0, tail)
return array(l, 'd')
def invert(self, chord):
chord = array(chord)
c = chord[1:self.N].tolist()
c.append(chord[0] + self.tonesPerOctave)
d = chord.copy()
d[0:self.N] = c
return d
def rotations(self, chord):
chord = self.tones(chord)
rotations = [chord]
for i in xrange(1, self.N):
#chord = self.rotate(chord, i)
chord = self.invert(chord)
rotations.append(chord)
return rotations
def isInside(self, chord, range):
if self.isPrism:
return self.isInFundamentalDomain(chord)
#return self.isInsidePrism(chord, range)
else:
return self.isInsideCube(chord, range)
def isInsideCube(self, chord, range):
for i in xrange(self.N):
if chord[i] < -range/2.0:
return False
if chord[i] > range/2.0:
return False
return True
def isInsideNormalPrism(self, chord, range):
if not self.isInsidePrism(chord, range):
return False
if self.isFirstInversion(chord):
return True
return False
def layer(self, chord):
return sum(chord[0:self.N])
def isInsidePrism(self, chord, range):
if chord[0] < -range:
return False
elif chord[0] > range:
return False
for i in xrange(1, self.N):
if chord[i] > chord[0] + range:
return False
elif chord[i] < chord[0]:
return False
s = sum(chord[0:self.N])
if 0 <= s and s <= range:
return True
else:
return False
def isInFundamentalDomain(self, chord):
if self.isInLayer(chord) and self.isInOrder(chord):
if self.debug:
print 'Chord',chord,'in F'
return True
else:
if self.debug:
print 'Chord',chord,'not in F'
return False
def isInLayer(self, chord):
L = self.layer(chord)
if not (0 <= L and L <= self.R):
return False
return True
def isInOrder(self, chord):
for i in xrange(self.N - 1):
if not chord[i] <= chord[i + 1]:
return False
if not chord[self.N - 1] <= (chord[0] + self.R):
return False
return True
def O(self, c):
if self.debug:
print "O: ",c,
r = []
for i in xrange(1, self.N):
r.append(c[i] - (self.R / self.N))
r.append(c[0] + (self.R - (self.R / self.N)))
c[0:self.N] = r
if self.debug:
print c
return c
def bounceInside(self, chord):
inversions = self.inversions(chord)
if self.debug:
print inversions
for inversion in inversions:
if tuple(inversion) in self.trichords:
return inversion
return None
def keepInside(self, chord):
if self.isInFundamentalDomain(chord):
return chord
else:
inversions = self.inversions(chord)
if self.debug:
print inversions
for inversion in inversions:
if self.isInOrder(inversion):
c = list(inversion)
for i in xrange(self.N):
if self.isInLayer(c):
return array(c)
c = self.O(c)
return None
def stayInside(self, chord):
if self.isInside(chord, self.getTessitura()):
return chord
chord = self.sort(chord)
if self.isPrism:
inversions = self.inversions(chord)
if self.debug:
print 'inversions',inversions
distances = {}
for inversion in inversions:
distances[self.euclidean(chord, inversion)] = inversion
c = distances[max(distances.keys())]
if self.debug:
print 'keepInside:', 't =',self.getTessitura(), 'original =',chord, 'inside =',c
return c
else:
c = array(chord)
for i in xrange(self.N):
while c[i] < -self.getTessitura()/2:
c[i] += self.getTessitura()
while c[i] >= self.getTessitura()/2:
c[i] -= self.getTessitura()
c = self.sort(c)
if self.debug:
print chord,'keeps inside as',c
return c
def pitchclasses(self, chord):
c = array(chord, 'd').copy()
for i in xrange(self.N):
c[i] = self.pitchclass(chord[i])
return c
def pitchclass(self, pitch):
return pitch % self.tonesPerOctave
'''
Returns the best bijective voice-leading,
first by smoothness then by parsimony,
optionally avoiding parallel fifths,
from a given source chord of pitches
to a new chord of pitches
that belong to the pitch-class set of a target chord,
and lie within a specified range.
The algorithm makes an exhaustive search
of potential target chords in the space.
'''
def voicelead(self, a, b, avoidParallels):
if self.debug:
print ' From:', a
print ' To:', b
print 'Through:'
invs = self.inversions(b)
if self.debug:
for inv in invs:
print ' ',inv
c = self.closest(a, invs, avoidParallels)
if self.debug:
print '(%d inversions) is:' % len(invs)
print ' ', c
print 'Leading:', self.voiceleading(a,c)
return c
def label(self, chord):
c = array(chord[0:self.N])
return 'C %s\nT %s\n0 %s\n1 %s\n0-1 %s\nSum %f' % (c, self.tones(c), self.zeroForm(c), self.firstInversion(c), self.zeroFormFirstInversion(chord), sum(chord[0:self.N]))
class TonnetzModel(Tonnetz):
def __init__(self, octaveCount=1, tonesPerOctave=12, isCube=False, isPrism=True, isNormalPrism=False, doCycle=False, showFirstInversion=False, doConnect=False, enableCsound=False, debug=False, showUnordered=False):
Tonnetz.__init__(self, 3, octaveCount=octaveCount, tonesPerOctave=tonesPerOctave, isCube=isCube, isPrism=isPrism, isNormalPrism=isNormalPrism, debug=debug)
self.trichords = {}
self.balls = {}
self.ballsForChordTypes = {}
self.doConnect = doConnect
self.doCycle = doCycle
self.showUnordered = showUnordered
self.showFirstInversion = showFirstInversion
self.firstInversions = []
self.enableCsound = enableCsound
if self.enableCsound:
self.csound = csnd6.CppSound()
if self.isCube:
for x in xrange(-self.cubeTessitura/2, self.cubeTessitura/2):
for y in xrange(-self.cubeTessitura/2, self.cubeTessitura/2):
for z in xrange(-self.cubeTessitura/2, self.cubeTessitura/2):
trichord = (x,y,z)
radius = 0.125
if trichord not in self.trichords:
self.trichords[trichord] = trichord
ball = sphere(pos = trichord, radius = self.cubeRadius)
ball.trichord = trichord
self.balls[ball.trichord] = ball
self.setColor(ball)
ball.name = self.label(trichord)
ball.label = label(pos = trichord, text = ball.name, height = 11, box = 2, opacity = 0.3, linecolor=(0.9,0.5,0.9), visible = 0, line = 2, xoffset = 20, yoffset = 20)
if self.isPrism or self.isNormalPrism:
for x in xrange(-self.R, self.R+1):
for y in xrange(x, x + self.R+1):
for z in xrange(x, x + self.R+1):
trichord = array((x,y,z), 'd')
trichord = tuple(self.sort(trichord))
if self.isPrism and self.isInsidePrism(trichord, self.R):
if trichord not in self.trichords:
self.trichords[trichord] = trichord
tones = tuple(self.tones(trichord))
ball = sphere(pos = trichord, radius = self.prismRadius)
ball.trichord = trichord
self.balls[ball.trichord] = ball
self.setColor(ball)
ball.name = self.label(trichord)
ball.label = label(pos = trichord, text = ball.name, height = 11, box = 2, opacity = 0.3, linecolor=(0.9,0.5,0.9), visible = 0, line = 2, xoffset = 20, yoffset = 20)
else:
self.balls[trichord].radius = self.prismRadius
if self.isNormalPrism and self.isInsideNormalPrism(trichord, self.R):
if trichord not in self.trichords:
self.trichords[trichord] = trichord
tones = tuple(self.tones(trichord))
ball = sphere(pos = trichord, radius = self.normalPrismRadius)
ball.trichord = trichord
self.balls[ball.trichord] = ball
self.setColor(ball)
ball.name = self.label(trichord)
ball.label = label(pos = trichord, text = ball.name, height = 11, box = 2, opacity = 0.3, linecolor=(0.5,0.5,0.5), visible = 0, line = 2, xoffset = -20, yoffset = 20)
else:
self.balls[trichord].radius = self.normalPrismRadius
if self.doConnect:
for trichord in self.trichords.values():
self.connect(trichord, self.sort((trichord[0] + 1.0, trichord[1], trichord[2])))
self.connect(trichord, self.sort((trichord[0], trichord[1] + 1.0, trichord[2])))
self.connect(trichord, self.sort((trichord[0], trichord[1], trichord[2] + 1.0)))
self.connect(trichord, self.sort((trichord[0] - 1.0, trichord[1], trichord[2])))
self.connect(trichord, self.sort((trichord[0], trichord[1] - 1.0, trichord[2])))
self.connect(trichord, self.sort((trichord[0], trichord[1], trichord[2] - 1.0)))
def setColor(self, ball):
z = tuple(self.zeroFormFirstInversion(ball.trichord))
if z in self.ballsForChordTypes:
ball.color = self.ballsForChordTypes[z].color
else:
# Color major triads red.
if z == (0, 4, 7):
ball.color = (1.0,0.0,0.0)
# Color augmented triads white.
elif z == (0, 4, 8):
ball.color = (1.0,1.0,1.0)
# Color minor triads blue.
elif z == (0, 3, 7):
ball.color = (0.67,0.67,1.0)
else:
hue = (z[0] + z[1] * 2.0 + z[2]) / 44.0
saturation = 1.0
value = 1.0
ball.color = color.hsv_to_rgb((hue, saturation, value))
def showAsFirstInversion(self, trichord):
if not self.showFirstInversion:
return False
elif self.isFirstInversion(trichord):
return True
else:
return False
def connect(self, origin, neighbor):
o = tuple(origin)
n = tuple(neighbor)
if n in self.trichords:
curve(pos = [o, n], color = (0.65, 0.65, 0.65), radius = 0.020)
def runGrab(self, filename, bbox=None):
while scene.visible:
if scene.mouse.clicked:
print 'CURRENT POINT:'
print 'center =',scene.center
print 'forward =',scene.forward
print 'up =',scene.up
print 'scale =',scene.scale
print 'fov = ',scene.fov
print
try:
if bbox:
pass #image = ImageGrab.grab(bbox)
else:
pass #image = ImageGrab.grab()
#image = ImageOps.grayscale(image)
#image.save(filename)
#print 'Captured screen shot in "%s".' % (filename)
except:
traceback.print_exc()
scene.mouse.events = 0
def playBall(self, pickedBall):
pickedBall.label.visible = 1
print pickedBall.name
note1 = "i 2 0 4 %d 70 0 -.75" % (60 + pickedBall.pos[0])
note2 = "i 2 0 4 %d 70 0 .0" % (60 + pickedBall.pos[1])
note3 = "i 2 0 4 %d 70 0 .75" % (60 + pickedBall.pos[2])
print '%s\n%s\n%s' % (note1, note2, note3)
if self.enableCsound:
self.csound.inputMessage(note1)
self.csound.inputMessage(note2)
self.csound.inputMessage(note3)
print
def run(self):
pickedBall = None
oldBall = None
movingChord = ( 0, 4, 7)
translation = (1,1,1)
while scene.visible:
movingChord = tuple(self.sort(movingChord))
if scene.kb.keys:
k = scene.kb.getkey()
print 'key: %s' % k
if k == 'up':
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.move(movingChord, 0, 1.0)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k == 'right':
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.move(movingChord, 1, 1.0)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k == 'down':
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.move(movingChord, 2, 1.0)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k == 'shift+up':
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.move(movingChord, 0, -1.0)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k == 'shift+right':
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.move(movingChord, 1, -1.0)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k == 'shift+down':
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.move(movingChord, 2, -1.0)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
if k in ('p', 'P'):
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.nrP(movingChord)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k in ('l', 'L'):
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.nrL(movingChord)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k in ('r', 'R'):
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.nrR(movingChord)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k in ('d', 'D'):
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
movingChord = self.nrD(movingChord)
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k in ('1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b'):
movingBall = self.balls[movingChord]
movingBall.label.visible = 0
if k == 'a':
k = 10
if k == 'b':
k = 11
movingChord = self.pT(movingChord, float(k))
movingBall = self.balls[movingChord]
movingBall.label.visible = 1
self.playBall(movingBall)
oldBall = movingBall
elif k == 'g':
self.runGrab("orbifold.png")
elif k in ('x', 'X', 'q', 'Q'):
sys.exit()
if scene.mouse.clicked:
try:
m = scene.mouse.getclick()
if oldBall:
oldBall.label.visible = 0
if pickedBall:
pickedBall.label.visible = 0
oldBall = pickedBall
pickedBall = m.pick
if pickedBall:
movingBall = pickedBall
movingChord = tuple(movingBall.pos)
self.playBall(pickedBall)
except:
traceback.print_exc()
print self.label(movingChord)
scene.mouse.events = 0
elif self.doCycle:
try:
movingBall = self.balls[movingChord]
movingBall.label.visible=1
print movingBall.name
time.sleep(2)
movingBall.label.visible=0
a = (movingChord[0], movingChord[1], movingChord[2])
print 'Old chord',a
movingChord = (movingChord[0] + translation[0], movingChord[1] + translation[1], movingChord[2] + translation[2])
print 'New chord',movingChord
#movingChord = self.voiceLead(a, b, True)
movingChord = tuple(self.keepInside(movingChord))
self.playBall(movingChord)
except:
traceback.print_exc()
print self.label(movingChord)
return
print "Finished."
def runModel(model):
began = time.clock()
scene.background = (1,1,1)
scene.background = (0,0,0)
scene.autocenter = 1
sort(model.firstInversions)
if model.enableCsound:
model.csound.setPythonMessageCallback()
model.csound.setOrchestra('''
sr=44100
ksmps=100
nchnls=2
iafno ftgen 3, 0, 4097, 10, 1, .4, .2, .1, .1, .05
iafno ftgen 41, 0, 65537, 10, 1 ; Sine wave.
iafno ftgen 42, 0, 65537, 11, 1 ; Cosine wave. Get that noise down on the most widely used table!
instr 2
; INITIALIZATION
ioctave = p4 / 12.0 + 3.0
iattack = 0.01
idecay = 2.0
isustain = p3
irelease = 0.125
p3 = iattack + idecay + isustain + irelease
iindex = 1
icrossfade = 3
ivibedepth = 0.02
iviberate = 4.8
ifn1 = 41
ifn2 = 3
ifn3 = 3
ifn4 = 41
ivibefn = 42
ifrequency = cpsoct(ioctave)
iamplitude = ampdb(p5) * 20.0
ijunk6 = p6
; Constant-power pan.
ipi = 4.0 * taninv(1.0)
iradians = p7 * ipi / 2.0
itheta = iradians / 2.0
; Translate angle in [-1, 1] to left and right gain factors.
irightgain = sqrt(2.0) / 2.0 * (cos(itheta) + sin(itheta)) * iamplitude
ileftgain = sqrt(2.0) / 2.0 * (cos(itheta) - sin(itheta)) * iamplitude
ijunk8 = p8
ijunk9 = p9
ijunk10 = p10
ijunk11 = p11
; AUDIO
adecay0 expsegr 1.0, iattack, 2.0, idecay, 1.1, isustain, 1.001, irelease, 1.0, irelease, 1.0
adecay = adecay0 - 1.0
asignal fmrhode 0.1, ifrequency, iindex, icrossfade, ivibedepth, iviberate, ifn1, ifn2, ifn3, ifn4, ivibefn
outs ileftgain * asignal * adecay, irightgain * asignal * adecay
endin
''')
model.csound.setScore('''
f1 0 8192 10 1
f0 6000
e
''')
#model.csound.setCommand('csound -h -d -r 48000 -k 1000 -m128 -b1000 -B1000 -odac')
#gc.disable()
#model.csound.compile()
#performanceThread = csnd6.CsoundPerformanceThread(model.csound)
#performanceThread.Play()
fg = (1,1,1)
arrowcolor = (0.7,0.7,0.7)
size = model.getTessitura() * 1.125
shaftwidth = model.cubeRadius * 1.0
arrow(pos = (0,0,0), axis=(size/3,0,0), fixedwidth=1, shaftwidth=shaftwidth, color = arrowcolor)
label(pos = (size/3,0,0), text = 'Voice 1', color=fg, height = 20, box = 0, linecolor=(0.5,0.5,0.5), opacity = 0.1, visible = 1, line = 0, xoffset = 5, yoffset = 5, zoffset = 5)
arrow(pos = (0,0,0), axis=(0,size/1.5,0), fixedwidth=1, shaftwidth=shaftwidth, color = arrowcolor)
label(pos = (0,size/1.5,0), text = 'Voice 2', color=fg, height = 20, box = 0, linecolor=(0.5,0.5,0.5), opacity = 0.1, visible = 1, line = 0, xoffset = 5, yoffset = 5, zoffset = 5)
arrow(pos = (0,0,0), axis=(0,0,size), fixedwidth=1, shaftwidth=shaftwidth, color = arrowcolor)
label(pos = (0,0,size), text = 'Voice 3', color=fg, height = 20, box = 0, linecolor=(0.5,0.5,0.5), opacity = 0.1, visible = 1, line = 10, xoffset = 5, yoffset = 5, zoffset = 5)
arrow(pos = (0,0,0), axis=(size/2.5,size/2.5,size/2.5), fixedwidth=1, shaftwidth=shaftwidth, color=arrowcolor)
label(pos = (size/2.5,size/2.5,size/2.5), text = 'Orthogonal axis', color=fg, height = 20, box = 0, linecolor=(0.5,0.5,0.5), opacity = 0.1, visible = 1, line = 0, xoffset = 5, yoffset = 5, zoffset = 5)
ended = time.clock()
elapsed = ended - began
print 'elapsed: %f' % (elapsed)
model.run()
print 'Visual finished.'
if model.enableCsound:
performanceThread.Stop()
print 'Csound finished.'
print 'Program finished.'
if __name__ == '__main__':
#scene.fullscreen = False
#scene.width = 300 * 7
#scene.height = 300 * 5
# Tonnetz for trichords
model = TonnetzModel(octaveCount=1, doCycle=False, doConnect=True, isPrism=True, enableCsound=True)
# Ranged chord space
#model = TonnetzModel(octaveCount=2, doCycle=False, doConnect=False, isCube=True, isPrism=False)
# Tonnetz in ranged chord space
#model = TonnetzModel(octaveCount=1, doCycle=True, doConnect=False, isPrism=True, isCube=True)
# Voice-leading space
#model = TonnetzModel(octaveCount=3, doCycle=True, doConnect=False, isPrism=True, isNormalPrism=False)
# Normal chord space
#model = TonnetzModel(octaveCount=3, doCycle=False, doConnect=False, isPrism=False, isNormalPrism=True)
# Normal chord space in voice-leading space
#model = TonnetzModel(octaveCount=3, doCycle=False, doConnect=False, isPrism=True, isNormalPrism=True)
runModel(model)
|