1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
|
#!/usr/bin/python
'''
C S O U N D P E R F O R M A N C E T E S T
Michael Gogins
24 September 2009
This script is designed to test both audio rendering quality
and audio rendering performance in Csound. The script can be used, for
example, to test for differences between the double and float
configurations of Csound, differences between output soundfile formats,
and so on.
For rendering quality tests, render two different soundfiles,
one created with one build of Csound and the other created with another
build, or one created with one set of options and the other created
with another set of options. Then listen to both output soundfiles
using an ABX comparator, which will perform a double-blind listening
test and compute the probability that any differences heard
actually exist. For best results, listen to small segments of the
output using both high-quality headphones and studio monitors.
Performance measurements can be made either for soundfile rendering,
or for real-time performance. For soundfile rendering, the script
will simply print out the rendering time, and the ratio of rendering
time to soundfile time, at the end of the run. For real-time
performance, the score generated by the script will gradually add
voices to the output, printing out the time each instrument is
activated as it runs and the total number of instruments active.
Performance is then measured by how long the increasingly dense
performance runs just before dropouts occur, and how many instances
of all instruments are active at that time.
The orchestra contains a variety of simple and numerically
demanding instruments, and a variety of synthesis techniques.
The score starts out with a sparse texture that gradually becomes
denser and denser.
Output soundfiles are named "CsoundPerformanceTest--" appended with the
rendering option used, the date, and the time.
Run this script with the name of the rendering option desired as an argument.
You can add your own rendering options to the table in the code.
If no rendering option is specified, 'master' will be used. The rendering
options are:
'audio': The score will be rendered to the real-time audio output (dac),
48,000 Hz stereo float samples, at 100 ksmps.
'preview:' The master output soundfile will be CD audio quality,
48,000 Hz stereo float samples, at 100 ksmps.
'cd': The master output soundfile will be CD audio quality,
44,100 Hz stereo 16 bit samples, at 1 ksmps.
'master': The master output soundfile will be high-resolution audio,
96,000 Hz stereo float samples, at 1 ksmps (default).
'''
print __doc__
print 'IMPORTING REQUIRED MODULES...'
print
import csnd6
import datetime
import math
import numpy
import os
try:
import psyco
psyco.full()
print 'Using psyco.'
except:
print 'Psyco not available.'
import random
import signal
import string
import subprocess
import sys
import time
import traceback
class CsoundComposition(object):
def __init__(self):
self.renderingMode = 'master'
self.playback = True
if os.name == 'posix':
self.dacName = 'dac'
else:
self.dacName = 'dac'
def createGlobalObjects(self):
print 'CREATING GLOBAL OBJECTS...'
print
self.csound = csnd6.CppSound()
self.csound.setPythonMessageCallback()
def createFilenames(self):
print 'CREATING FILENAMES...'
print
self.began = time.clock()
self.timestamp = datetime.datetime.now()
print 'Timestamp: %s' % self.timestamp
self.scriptPathname = os.path.realpath(sys.argv[0])
print 'Full script pathname: %s' % self.scriptPathname
self.title, self.ext = os.path.splitext(os.path.basename(self.scriptPathname))
timestampString = str(self.timestamp)
timestampString = timestampString.replace(' ', '--')
self.title = self.title + '--' + self.renderingMode + '--' + timestampString
self.title = self.title.replace(':', '-')
print 'Title: %s' % self.title
self.directory = os.path.dirname(self.scriptPathname)
if len(self.directory):
os.chdir(self.directory)
print 'Working directory: %s' % self.directory
self.orcFilename = self.directory + os.sep + self.title + '.orc'
print 'Csound orchestra: %s' % self.orcFilename
self.scoFilename = self.directory + os.sep + self.title + '.sco'
print 'Csound score: %s' % self.scoFilename
self.csoundOutputSoundfile = self.directory + os.sep + self.title + '.wav'
print 'Output soundfile: %s' % self.csoundOutputSoundfile
print 'Audio output name: %s' % self.dacName
self.createCsoundCommands()
print
def createCsoundCommands(self):
self.commandsForRendering = {
'preview': r'csound -m 0 -gWfRK -r=48000 -k=480 -o %s %s %s' % (self.csoundOutputSoundfile, self.orcFilename, self.scoFilename),
'cd': r'csound -m 0 -gWdRK -r=44100 -k=44100 -o %s %s %s' % (self.csoundOutputSoundfile, self.orcFilename, self.scoFilename),
'master': r'csound -m 0 -gWfRK -r=96000 -k=96000 -o %s %s %s' % (self.csoundOutputSoundfile, self.orcFilename, self.scoFilename),
'audio': r'csound -m 0 -ghr=44100 -k=441 -o %s %s %s' % (self.dacName, self.orcFilename, self.scoFilename),
}
self.csoundCommand = self.commandsForRendering[self.renderingMode]
print 'Csound command line: %s' % self.csoundCommand
print
def renderCsound(self):
self.csound.setCommand(self.csoundCommand)
self.createCsoundOrchestra()
self.createScore()
self.csound.exportForPerformance()
self.ended = time.clock()
self.elapsed = self.ended - self.began
print 'Finished generating at %s' % time.strftime('%Y-%b-%d %A %H:%M:%S')
print 'Elapsed time: %-9.2f seconds.' % self.elapsed
self.csound.perform()
print
self.ended = time.clock()
self.elapsed = self.ended - self.began
print 'Finished rendering at %s' % time.strftime('%Y-%b-%d %A %H:%M:%S')
print 'Elapsed time: %-9.2f seconds.' % self.elapsed
print 'Score time: %-9.2f seconds.' % self.scoreTime
print 'Score time / elapsed time: %-9.2f. ' % (self.scoreTime / self.elapsed)
print
if self.renderingMode == 'audio':
exit(0)
def createScore(self):
print 'CREATING SCORE...'
print
self.createCsoundArrangement()
self.model.createCsoundScore()
print
def render(self):
print 'RENDERING OPTIONS...'
print
print 'Rendering mode: %s' % self.renderingMode
print 'Playback: %s' % self.playback
print
self.createGlobalObjects()
self.createFilenames()
self.createCsoundCommands()
self.createCsoundOrchestra()
self.createScore()
self.renderCsound()
def createCsoundOrchestra(self):
print 'CREATING CSOUND ORCHESTRA...'
print
self.csoundOrchestra = \
'''
<CsoundSynthesizer>
<CsOptions>
csound -f -h -M0 -d -m99 --midi-key=4 --midi-velocity=5 -odac4 temp.orc temp.sco
</CsOptions>
<CsInstruments>
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; T H E S I L E N C E O R C H E S T R A
; Copyright (c) 2006, 2008 by Michael Gogins
; This file is licensed under the GNU Lesser General Public License
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; OBJECTIVES
;
; - Support algorithmic composition in time and pitch
; - Most beautiful sounds
; - Highest precision
; - Lowest noise
; - No clicks
; - Offline/MIDI real-time interoperability;
; enables developing and balancing instruments using a MIDI keyboard
; - Gains normalized across instruments, pitches, velocities, using
; the studio standard (0 dB is full scale, signal should average -6 dBFS)
; (see NoteOn UDO, below).
; - Modular code
; - READABLE code!
;
; TO DO
;
; Add instruments from Cyclic Bells.
; Clean up 'TODO' commented instruments below.
;
; PFIELDS
;
; All instruments use the following standardized set of pfields:
;
; p1 Instrument number
; p2 Time of note, in absolute seconds from start of performance
; p3 Duration of note, in seconds
; p4 MIDI key (may be fractional)
; p5 MIDI velocity (may be fractional), rescaled (0 = -84 dBFS, 127 = 0 dBFS)
; p6 Audio phase, in radians (seldom used; enables grain notes to
; implement arbitrary audio transforms)
; p7 x location or stereo pan (-1 through 0 to +1)
; p8 y location or stage depth (-1 through 0 to +1)
; p9 z location or stage height (-1 through 0 to +1)
; p10 Pitch-class set, as sum of 2^(pitch-class).
;
; EFFECTS BUSSES
;
; The orchestra uses one input buss for each of the following effects:
;
; Leslie
; Chorus
; Reverberation
; Output
;
; MASTER OUTPUT EFFECTS
;
; The master output buss has the following additional effects:
;
; Bass enhancement
; Compression
; Remove DC bias
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; O R C H E S T R A H E A D E R
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1.0
giseed = 0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; F U N C T I O N T A B L E S
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Waveform for the string-pad
giwave ftgen 1, 0, 65537, 10, 1, .5, .33, 0.25, .0, 0.1, .1, 0.1
gisine ftgen 2, 0, 65537, 10, 1
giwtsin init gisine
giharpsichord ftgen 0, 0, 65537, 7, -1, 1024, 1, 1024, -1 ; Kelley harpsichord.
gicosine ftgen 0, 0, 65537, 11, 1 ; Cosine wave. Get that noise down on the most widely used table!
giexponentialrise ftgen 0, 0, 65537, 5, .001, 513, 1 ; Exponential rise.
githirteen ftgen 0, 0, 65537, 9, 1, .3, 0
giln ftgen 0, 0, 65537, -12, 20.0 ; Unscaled ln(I(x)) from 0 to 20.0.
gibergeman ftgen 0, 0, 65537, 10, .28, 1, .74, .66, .78, .48, .05, .33, 0.12, .08, .01, .54, 0.19, .08, .05, 0.16, .01, 0.11, .3, .02, 0.2 ; Bergeman f1
gicookblank ftgen 0, 0, 65537, 10, 0 ; Blank wavetable for some Cook FM opcodes.
gicook3 ftgen 0, 0, 65537, 10, 1, .4, 0.2, 0.1, 0.1, .05
gikellyflute ftgen 0, 0, 65537, 10, 1, 0.25, 0.1 ; Kelley flute.
gichebychev ftgen 0, 0, 65537, -7, -1, 150, 0.1, 110, 0, 252, 0
giffitch1 ftgen 0, 0, 65537, 10, 1
giffitch2 ftgen 0, 0, 65537, 5, 1, 1024, .01
giffitch3 ftgen 0, 0, 65537, 5, 1, 1024, .001
; Rotor Tables
gitonewheel1 ftgen 0, 0, 65537, 10, 1, .02, .01
gitonewheel2 ftgen 0, 0, 65537, 10, 1, 0, 0.2, 0, 0.1, 0, .05, 0, .02
; Rotating Speaker Filter Envelopes
gitonewheel3 ftgen 0, 0, 65537, 7, 0, 110, 0, 18, 1, 18, 0, 110, 0
gitonewheel4 ftgen 0, 0, 65537, 7, 0, 80, 0.2, 16, 1, 64, 1, 16, 0.2, 80, 0
; Distortion Tables
gitonewheel5 ftgen 0, 0, 65537, 8, -.8, 336, -.78, 800, -.7, 5920, .7, 800, .78, 336, .8
gitonewheel6 ftgen 0, 0, 65537, 8 -.8, 336, -.76, 3000, -.7, 1520, .7, 3000, .76, 336, .8
; Table for Reed Physical Model
gireedtable ftgen 0, 0, 256, 7, 1, 80, 1, 156, -1, 40, -1
; Tables for simple granular synthesis
gigrtab ftgen 0, 0, 65537, 10, 1, 0.3, .1, 0, .2, .02, 0, .1, .04
giwintab ftgen 0, 0, 65537, 10, 1, 0, .5, 0, .33, 0, .25, 0, .2, 0, .167
; Tables for waveshaping drone
giharmonics ftgen 0, 0, 65537, 10, 1, 0, 2, 0, 0, 1
gidistortion ftgen 0, 0, 65537, 13, 1, 1, 0, 1, 0, 1
; Tables for Lee Zakian flute
gif1 ftgen 0, 0, 65537, 10, 1
gif2 ftgen 0, 0, 16, -2, 40, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 10240
gif26 ftgen 0, 0, 65537, -10, 2000, 489, 74, 219, 125, 9, 33, 5, 5
gif27 ftgen 0, 0, 65537, -10, 2729, 1926, 346, 662, 537, 110, 61, 29, 7
gif28 ftgen 0, 0, 65537, -10, 2558, 2012, 390, 361, 534, 139, 53, 22, 10, 13, 10
gif29 ftgen 0, 0, 65537, -10, 12318, 8844, 1841, 1636, 256, 150, 60, 46, 11
gif30 ftgen 0, 0, 65537, -10, 1229, 16, 34, 57, 32
gif31 ftgen 0, 0, 65537, -10, 163, 31, 1, 50, 31
gif32 ftgen 0, 0, 65537, -10, 4128, 883, 354, 79, 59, 23
gif33 ftgen 0, 0, 65537, -10, 1924, 930, 251, 50, 25, 14
gif34 ftgen 0, 0, 65537, -10, 94, 6, 22, 8
gif35 ftgen 0, 0, 65537, -10, 2661, 87, 33, 18
gif36 ftgen 0, 0, 65537, -10, 174, 12
gif37 ftgen 0, 0, 65537, -10, 314, 13
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; U S E R - D E F I N E D O P C O D E S
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
opcode AssignSend, 0, iiiii
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
insno,ic,il,ir,id xin
inum = floor(insno)
;print inum, ic, il, ir, id
MixerSetLevel inum, 200, ic
;MixerSetLevel inum, 201, il
MixerSetLevel inum, 210, ir
MixerSetLevel inum, 220, id
endop
opcode NoteOn, ikii, iii
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; General purpose instrument control UDO.
; Returns the pitch at i-rate, the pitch at k-rate
; (with addition of smoothed MIDI pitch bend, if any),
; decibels full scale scaled from MIDI velocity,
; and the amplitude scaled such that 127 == 0 dBFS.
;
; If an instrument is balanced, then its solo peak
; amplitude at MIDI velocity 127 should be exactly
; 0 dBFS. If the instrument is too loud (or too soft)
; at velocity 127, set imeasuredDBFS to the peak level
; reported by Csound; e.g. for the following messsage:
;
; rtevent: T 12.257 TT 12.257 M: +3.35 +3.60
; number of samples out of range: 511 552
;
; set the imeasuredDBFS parameter in the NoteOn call
; in the instrument to 3.6. This will noprmalize the
; instrument.
ikey,ivelocity,imeasureddBFS xin
; Convert MIDI key number to cycles per second.
iHz = cpsmidinn(ikey)
; Modify with MIDI pitch bend, if any.
kpitchbend pchbend -6.0, +6.0
kpitchbend = kpitchbend + 6.0
iinitialpb init i(kpitchbend)
;print iinitialpb
; Smooth out the stepping in the MIDI control signal.
ksmoothbend port kpitchbend, 0.125, iinitialpb
kKey = ikey + ksmoothbend
kHz = cpsmidinn(kKey)
; Scale MIDI velocity to decibels.
ipower pow ivelocity / 127.0, 2.0
idecibels = 20.0 * log10(ipower)
imidiamplitude = ampdbfs(idecibels)
; Normalize so amplitude at velocity 127 == amplitude at full scale.
inormalFS = ampdbfs(0)
imeasured127 = ampdbfs(imeasureddBFS)
inormal = inormalFS / imeasured127
inormalizedamplitude = imidiamplitude * inormal
;print ivelocity, idecibels, imidiamplitude, inormal, inormalizedamplitude
itime times
iactive = 0
iindex = 2
itotalactive = 0
toploop:
if iindex > 100 igoto endloop
iactive active iindex
itotalactive = itotalactive + iactive
iindex = iindex + 1
igoto toploop
endloop:
printf_i "Activated instr %4d at %-9.4f seconds %5d instances.\\n", p1, p1, itime, itotalactive
xout iHz, kHz, inormalizedamplitude, idecibels
endop
opcode Modulation, k, j
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Returns +- one octave of pitch bend in MIDI
; key numbers.
kpitchbend init 0
xout kpitchbend
endop
opcode SendOut, 0, iaa
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
insno, aleft, aright xin
inum = floor(insno)
MixerSend aleft, inum, 200, 0
MixerSend aright, inum, 200, 1
MixerSend aleft, inum, 210, 0
MixerSend aright, inum, 210, 1
MixerSend aleft, inum, 220, 0
MixerSend aright, inum, 220, 1
;print inum
endop
opcode Pan, aa, ka
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
kpan, asignal xin
; Constant-power pan.
apan = (kpan / 2.0) + 0.5
aleft, aright pan2 asignal, apan
xout aleft, aright
endop
opcode Declick, iaa, iiiaa
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
iatt,idur,irel,a1,a2 xin
if (idur > 0) then
isustain = idur
idur = iatt + isustain + irel
else
isustain = 100000.0
endif
aenv linsegr 0.0, iatt, 1.0, isustain, 1.0, irel, 0.0
ab1 = a1 * aenv
ab2 = a2 * aenv
xout idur, ab1, ab2
endop
opcode Damping, ia, iii
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
iatt,idur,irel xin
if (idur > 0) then
isustain = idur
idur = iatt + isustain + irel
else
isustain = 100000.0
endif
; Releasing envelope for MIDI performance.
aenv linsegr 0.0, iatt, 1.0, isustain, 1.0, irel, 0.0
xout idur, aenv
endop
opcode ADSR, ia, iiiiiiii
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Outputs new p3, arate envelope for
; attack time, attack level,
; decay time, decay level,
; sustain time (should usually be p3), sustain level,
; release time, release level, slope exponent.
; Handles real-time by indefinitely extending
; sustain time and p3.
iat,ial,idt,idl,ist,irt,irl,islope xin
ip3 = iat + idt + ist + irt
aenvelope transeg 0.0, iat, islope, ial, idt, islope, idl, ist, islope, irl, irt, islope, 0.0
xout ip3, aenvelope
endop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; M I X E R L E V E L S
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
instr 1 ; Mixer level
isend = p4
ibuss0 = p5
igain0 = p6
MixerSetLevel isend, ibuss0, igain0
endin
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I N S T R U M E N T D E F I N I T I O N S
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
instr 2 ; Xanadu instr 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 5.0
p3,adamping Damping 0.003, p3, 0.1
ishift = 8.0 / 1200.0
kpch = kHz ; convert parameter 5 to cps.
koct = octcps(kHz) ; convert parameter 5 to oct.
kvib poscil 1.0 / 120.0, kpch / 50.0, gicosine ; vibrato
ag pluck 1, cpsoct(koct + kvib), 1000, 1, 1
agleft pluck 1, cpsoct(koct + ishift), 1000, 1, 1
agright pluck 1, cpsoct(koct - ishift), 1000, 1, 1
ag = adamping * ag
agleft = adamping * agleft
agright = adamping * agright
af1 transeg 0.1, 5., -3, 1.0, 300, 0, 1.0 ; exponential from 0.1 to 1.0
af2 transeg 1.0, 5., -3, 0.1, 300, 0, 0.1 ; exponential from 1.0 to 0.1
adump delayr 2.0 ; set delay line of 2.0 sec
atap1 deltap3 af1 ; tap delay line with kf1 func.
atap2 deltap3 af2 ; tap delay line with kf2 func.
ad1 deltap3 2.0 ; delay 2 sec.
ad2 deltap3 1.1 ; delay 1.1 sec.
delayw ag ; put ag signal into delay line.
aleft = agleft + atap1 + ad1 * adamping
aright = agright + atap2 + ad2 * adamping
aleft = iamplitude * aleft * adamping
aright = iamplitude * aright * adamping
aleft, aright Pan p7, aleft + aright
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 3 ; Xanadu instr 2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 5
p3,adamping Damping 0.006, p3, 0.06
ishift = 8.0 / 1200.0
kpch = kHz
koct = octcps(kHz)
kvib poscil 1/120, kpch/50, gicosine ; vibrato
ag pluck 1, cpsoct(koct + kvib), 1000, 1, 1
agleft pluck 1, cpsoct(koct + ishift), 1000, 1, 1
agright pluck 1, cpsoct(koct - ishift), 1000, 1, 1
adump delayr 0.3 ; set delay line of 0.3 sec
ad1 deltap3 0.1 ; delay 100 msec.
ad2 deltap3 0.2 ; delay 200 msec.
ag = adamping * ag
agleft = adamping * agleft
agright = adamping * agright
delayw ag ; put ag sign into del line.
aleft = agleft + ad1
aright = agright + ad2
aleft, aright Pan p7, iamplitude * (aleft + aright) * adamping
AssignSend p1, 0, 0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 4 ; Xanadu instr 3
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 6.5
ip3 = 5.0
p3, adamping Damping 0.01, ip3, 0.01
ishift = 8.0 / 1200.0
kpch = kHz
koct = octcps(kpch)
; kadsr linseg 0, p3/3, 1.0, p3/3, 1.0, p3/3, 0 ; ADSR envelope
amodi linseg 0, ip3/3, 5, ip3/3, 3, ip3/3, 0 ; ADSR envelope for I
ip6 = 1.2
ip7 = 0.8
amodr linseg ip6, ip3, ip7 ; r moves from p6->p7 in p3 sec.
a1 = amodi * (amodr - 1 / amodr) / 2
a1ndx = abs(a1 * 2 / 20) ; a1*2 is normalized from 0-1.
a2 = amodi * (amodr + 1 / amodr) / 2
a3 tablei a1ndx, giln, 1 ; lookup tbl in f3, normal index
ao1 poscil a1, kpch, gicosine
a4 = exp(-0.5 * a3 + ao1)
ao2 poscil a2 * kpch, kpch, gicosine
aoutl poscil 1 * a4, ao2 + cpsoct(koct + ishift), gisine
aoutr poscil 1 * a4, ao2 + cpsoct(koct - ishift), gisine
aleft = aoutl * iamplitude * adamping
aright = aoutr * iamplitude * adamping
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 5 ; Tone wheel organ, Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 25.0
iphase = 0.0
ikey = p4 ;12 * int(p4 - 6) + 100 * (p4 - 6)
kfqc = kHz
; The lower tone wheels have increased odd harmonic content.
iwheel1 = ((ikey - 12) > 12 ? gitonewheel1 : gitonewheel2)
iwheel2 = ((ikey + 7) > 12 ? gitonewheel1 : gitonewheel2)
iwheel3 = (ikey > 12 ? gitonewheel1 : gitonewheel2)
iwheel4 = 1
; Start Dur Amp Pitch SubFund Sub3rd Fund 2nd 3rd 4th 5th 6th 8th
;i1 0 6 200 8.04 8 8 8 8 3 2 1 0 4
asubfund poscil 8, 0.5 * kfqc, iwheel1, iphase / (ikey - 12)
asub3rd poscil 8, 1.4983 * kfqc, iwheel2, iphase / (ikey + 7)
afund poscil 8, kfqc, iwheel3, iphase / ikey
a2nd poscil 8, 2 * kfqc, iwheel4, iphase / (ikey + 12)
a3rd poscil 3, 2.9966 * kfqc, iwheel4, iphase / (ikey + 19)
a4th poscil 2, 4 * kfqc, iwheel4, iphase / (ikey + 24)
a5th poscil 1, 5.0397 * kfqc, iwheel4, iphase / (ikey + 28)
a6th poscil 0, 5.9932 * kfqc, iwheel4, iphase / (ikey + 31)
a8th poscil 4, 8 * kfqc, iwheel4, iphase / (ikey + 36)
asignal = asubfund + asub3rd + afund + a2nd + a3rd + a4th + a5th + a6th + a8th
aleft, aright Pan p7, asignal * iamplitude
p3, aleft, aright Declick 0.005, p3, 0.3, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 6 ; Guitar, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -5.5
acomp pluck iamplitude, 440.0, 440.0, 0, 1, .1
iHz init i(kHz)
iHz2 = iHz / 2.0
asig pluck iamplitude, kHz, iHz2, 0, 1, .1
aenvelope transeg 1.0, 10.0, -5.0, 0.0
af1 reson asig, 110, 80
af2 reson asig, 220, 100
af3 reson asig, 440, 80
asignal balance 0.6 * af1+ af2 + 0.6 * af3 + 0.4 * asig, acomp
aleft, aright Pan p7, asignal * aenvelope
p3, aleft, aright Declick 0.007, p3, 0.05, aleft, aright
AssignSend p1, 0.0, 0.0, 0.4, 1
SendOut p1, aleft, aright
endin
instr 7 ; Harpsichord, James Kelley
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -2.43
aenvelope transeg 1.0, 10.0, -5.0, 0.0
apluck pluck iamplitude, kHz, iHz, 0, 1
aharp poscil aenvelope, kHz, giharpsichord
aharp2 balance apluck, aharp
asignal = (apluck + aharp2) * iamplitude
aleft, aright Pan p7, asignal
p3, aleft, aright Declick 0.005, p3, 0.3, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 8 ; Heavy metal model, Perry Cook
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -8.5
iindex = 1.1
icrossfade = 2
ivibedepth = 0.02
iviberate = 4.8
ifn1 = gisine
ifn2 = giexponentialrise
ifn3 = githirteen
ifn4 = gisine
ivibefn = gicosine
iattack = 0.003
idecay = 3.0
isustain = p3
irelease = 0.05
adecay transeg 0.0, iattack, -4, 1.0, idecay, -4, 0.1, isustain, -4, 0.1, irelease, -4, 0.0
asignal fmmetal 1.0, kHz, iindex, icrossfade, ivibedepth, iviberate, ifn1, ifn2, ifn3, ifn4, ivibefn
aleft, aright Pan p7, asignal * iamplitude * adecay
p3, aleft, aright Declick 0.005, p3, 0.3, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 9 ; Xing by Andrew Horner
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
; p4 pitch in octave.pch
; original pitch = A6
; range = C6 - C7
; extended range = F4 - C7
iHz,kHz,iamplitude,idB NoteOn p4, p5, -10.0
isine = 1
iinstrument = p1
istarttime = p2
ioctave = p4
idur = p3
kfreq = kHz
iamp = 1
inorm = 32310
aamp1 linseg 0,.001,5200,.001,800,.001,3000,.0025,1100,.002,2800,.0015,1500,.001,2100,.011,1600,.03,1400,.95,700,1,320,1,180,1,90,1,40,1,20,1,12,1,6,1,3,1,0,1,0
adevamp1 linseg 0, .05, .3, idur - .05, 0
adev1 poscil adevamp1, 6.7, gisine, .8
amp1 = aamp1 * (1 + adev1)
aamp2 linseg 0,.0009,22000,.0005,7300,.0009,11000,.0004,5500,.0006,15000,.0004,5500,.0008,2200,.055,7300,.02,8500,.38,5000,.5,300,.5,73,.5,5.,5,0,1,1
adevamp2 linseg 0,.12,.5,idur-.12,0
adev2 poscil adevamp2, 10.5, gisine, 0
amp2 = aamp2 * (1 + adev2)
aamp3 linseg 0,.001,3000,.001,1000,.0017,12000,.0013,3700,.001,12500,.0018,3000,.0012,1200,.001,1400,.0017,6000,.0023,200,.001,3000,.001,1200,.0015,8000,.001,1800,.0015,6000,.08,1200,.2,200,.2,40,.2,10,.4,0,1,0
adevamp3 linseg 0, .02, .8, idur - .02, 0
adev3 poscil adevamp3, 70, gisine ,0
amp3 = aamp3 * (1 + adev3),
awt1 poscil amp1, kfreq, gisine
awt2 poscil amp2, 2.7 * kfreq, gisine
awt3 poscil amp3, 4.95 * kfreq, gisine
asig = awt1 + awt2 + awt3
arel linenr 1,0, idur, .06
asignal = asig * arel * (iamp / inorm) * iamplitude
aleft, aright Pan p7, asignal
p3, aleft, aright Declick 0.005, p3, 0.3, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 10 ; FM modulated left and right detuned chorusing, Thomas Kung
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 16.5
iattack = 0.25
isustain = p3
irelease = 0.3333333
p3, adamping Damping iattack, isustain, irelease
ip6 = 0.3
ip7 = 2.2
ishift = 4.0 / 12000.0
kpch = kHz
koct = octcps(kHz)
aadsr linen 1.0, iattack, irelease, 0.01
amodi linseg 0, iattack, 5, p3, 2, irelease, 0
; r moves from ip6 to ip7 in p3 secs.
amodr linseg ip6, p3, ip7
a1 = amodi * (amodr - 1 / amodr) / 2
; a1*2 is argument normalized from 0-1.
a1ndx = abs(a1 * 2 / 20)
a2 = amodi * (amodr + 1 / amodr) / 2
; Look up table is in f43, normalized index.
a3 tablei a1ndx, giln, 1
; Cosine
ao1 poscil a1, kpch, gicosine
a4 = exp(-0.5 * a3 + ao1)
; Cosine
ao2 poscil a2 * kpch, kpch, gicosine
; Final output left
aleft poscil a4, ao2 + cpsoct(koct + ishift), gisine
; Final output right
aright poscil a4, ao2 + cpsoct(koct - ishift), gisine
aleft, aright Pan p7, (aleft + aright) * iamplitude * adamping
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 11 ; String pad, Anthony Kozar
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; String-pad borrowed from the piece "Dorian Gray",
; http://akozar.spymac.net/music/ Modified to fit my needs
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 3.0
; Slow attack and release
iattack = 2.0
idecay = 2.0
isustain = p3
irelease = 0.06
actrl transeg 0, iattack, -5, 1.0, idecay, -5, 0.1, isustain, -5, 0.1, irelease, -5, 0
; Slight chorus effect
afund poscil actrl, kHz, giwave ; audio oscillator
acel1 poscil actrl, kHz - .1, giwave ; audio oscilator - flat
acel2 poscil actrl, kHz + .1, giwave ; audio oscillator - sharp
asig = afund + acel1 + acel2
; Cut-off high frequencies depending on midi-velocity
; (larger velocity implies brighter sound)
;asig butterlp asig, 900 + iamp / 40.
aleft, aright Pan p7, asig * iamplitude
p3, aleft, aright Declick 0.25, p3, 0.5, aleft, aright
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 12 ; Filtered chorus, Michael Bergeman
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 71
p3, adamping Damping 0.01, p3, 0.01
koctave = octcps(kHz)
idb = 1.5
ip5 = gibergeman
ip3 = 5.0
ip6 = 0.9
ip7 = 1.4
kp8 = cpsoct(koctave - .01)
kp9 = cpsoct(koctave + .01)
isc = idb * .333
k1 linseg 40, ip3, 800, p3, 800, 0.06, 0.0
k2 linseg 440, ip3, 220, p3, 220, 0.06, 0.0
k3 linseg 0.0, ip6, 800, ip7, 200.0, p3, 200, 0.06, 0.0
k4 linseg 800, ip3, 40, p3, 40, 0.06, 0.0
k5 linseg 220, ip3, 440, p3, 440, 0.06, 0.0
k6 linseg isc, ip6, p3, ip7, p3, 0.06, 0.0
k7 linseg 0.0, ip6, 1, ip7, .3, p3, .1, 0.06, 0.0
a5 poscil k3, kp8, ip5
a6 poscil k3, kp8 * 0.999, ip5
a7 poscil k3, kp8 * 1.001, ip5
a1 = a5 + a6 + a7
a8 poscil k6, kp9, ip5
a9 poscil k6, kp9 * 0.999, ip5
a10 poscil k6, kp9 * 1.001, ip5
a11 = a8 + a9 + a10
a2 butterbp a1, k1, 40
a3 butterbp a2, k5, k2 * 0.8
a4 balance a3, a1
a12 butterbp a11, k4, 40
a13 butterbp a12, k2, k5 * 0.8
a14 balance a13, a11
a15 reverb2 a4, 5, 0.3
a16 reverb2 a4, 4, 0.2
a17 = (a15 + a4) * k7
a18 = (a16 + a4) * k7
aleft, aright Pan p7, (a17 + a18) * iamplitude * adamping
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 13 ; Plain plucked string, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 5
iattack = 0.002
isustain = p3
irelease = 0.05
aenvelope transeg 1.0, p3, -3.0, 0.1
aexcite poscil 1.0, 1, gisine
asignal1 wgpluck2 0.1, 1.0, iHz, 0.25, 0.22
asignal2 wgpluck2 0.1, 1.0, iHz * 1.003, 0.20, 0.223
asignal3 wgpluck2 0.1, 1.0, iHz * 0.997, 0.23, 0.224
apluckout = (asignal1 + asignal2 + asignal3) * aenvelope
aleft, aright Pan p7, apluckout * iamplitude
p3, aleft, aright Declick iattack, p3, irelease, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 14 ; Rhodes electric piano model, Perry Cook
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 1
iattack = 0.002
isustain = p3
irelease = 0.05
iindex = 4
icrossfade = 3
ivibedepth = 0.2
iviberate = 6
ifn1 = gisine
ifn2 = gicosine
ifn3 = gisine
ifn4 = gicookblank
ivibefn = gisine
asignal fmrhode iamplitude, kHz, iindex, icrossfade, ivibedepth, iviberate, ifn1, ifn2, ifn3, ifn4, ivibefn
aleft, aright Pan p7, asignal
p3, aleft, aright Declick iattack, p3, irelease, aleft, aright
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 15 ; Tubular bell model, Perry Cook
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -2
iindex = 1
icrossfade = 2
ivibedepth = 0.2
iviberate = 6
ifn1 = gisine
ifn2 = gicook3
ifn3 = gisine
ifn4 = gisine
ivibefn = gicosine
asignal fmbell 1.0, kHz, iindex, icrossfade, ivibedepth, iviberate, ifn1, ifn2, ifn3, ifn4, ivibefn
aleft, aright Pan p7, asignal * iamplitude
p3, aleft, aright Declick 0.005, p3, 0.05, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 16 ; FM moderate index, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 3.5
iattack = 0.002
isustain = p3
idecay = 1.5
irelease = 0.05
icarrier = 1
imodulator = 1
ifmamplitude = 8
index = 5.4
ifrequencyb = iHz * 1.003
icarrierb = icarrier * 1.004
aindenv transeg 0.0, iattack, -7.0, 1.0, idecay, -7.0, 0.025, isustain, 0.0, 0.025, irelease, -7.0, 0.0
aindex = aindenv * index * ifmamplitude
aouta foscili 1.0, iHz, icarrier, imodulator, index, 1
aoutb foscili 1.0, ifrequencyb, icarrierb, imodulator, index, 1
; Plus amplitude correction.
afmout = (aouta + aoutb) * aindenv
aleft, aright Pan p7, afmout * iamplitude
p3, aleft, aright Declick iattack, p3, irelease, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 17 ; FM moderate index 2, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 3.7
iattack = 0.002
isustain = p3
idecay = 1.5
irelease = 0.05
icarrier = 1
imodulator = 3
ifmamplitude = 8
index = 5.5
ifrequencyb = iHz * 1.003
icarrierb = icarrier * 1.004
aindenv transeg 0.0, iattack, -7.0, 1.0, idecay, -7.0, 0.025, isustain, 0.0, 0.025, irelease, -7.0, 0.0
aindex = aindenv * index * ifmamplitude
aouta foscili 1.0, iHz, icarrier, imodulator, index, 1
aoutb foscili 1.0, ifrequencyb, icarrierb, imodulator, index, 1
; Plus amplitude correction.
afmout = (aouta + aoutb) * aindenv
aleft, aright Pan p7, afmout * iamplitude
p3, aleft, aright Declick iattack, p3, irelease, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 18 ; FM moderate index 3, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 3.7
iattack = 0.002
isustain = p3
idecay = 1.5
irelease = 0.05
icarrier = 1
imodulator = 1.5
ifmamplitude = 2
index = 0.5
ifrequencyb = iHz * 1.003
icarrierb = icarrier * 1.004
aindenv transeg 0.0, iattack, -7.0, 1.0, idecay, -7.0, 0.025, isustain, 0.0, 0.025, irelease, -7.0, 0.0
aindex = aindenv * index * ifmamplitude
; ares foscili xamp, kcps, xcar, xmod, kndx, ifn [, iphs]
aouta foscili 1.0, iHz, icarrier, imodulator, index, 1
aoutb foscili 1.0, ifrequencyb, icarrierb, imodulator, index, 1
; Plus amplitude correction.
afmout = (aouta + aoutb) * aindenv
aleft, aright Pan p7, afmout * iamplitude
p3, aleft, aright Declick iattack, p3, irelease, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 19 ; Flute, Lee Zakian
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -1
p3, adamping Damping 0.01, p3, 0.01
ip3 = (p3 < 3.0 ? p3 : 3.0)
; parameters
; p4 overall amplitude scaling factor
ip4 init iamplitude
; p5 pitch in Hertz (normal pitch range: C4-C7)
ip5 init iHz
; p6 percent vibrato depth, recommended values in range [-1., +1.]
ip6 init 1
; 0.0 -> no vibrato
; +1. -> 1% vibrato depth, where vibrato rate increases slightly
; -1. -> 1% vibrato depth, where vibrato rate decreases slightly
; p7 attack time in seconds
; recommended value: .12 for slurred notes, .06 for tongued notes
; (.03 for short notes)
ip7 init .08
; p8 decay time in seconds
; recommended value: .1 (.05 for short notes)
ip8 init .08
; p9 overall brightness / filter cutoff factor
; 1 -> least bright / minimum filter cutoff frequency (40 Hz)
; 9 -> brightest / maximum filter cutoff frequency (10,240Hz)
ip9 init 5
; initial variables
iampscale = ip4 ; overall amplitude scaling factor
ifreq = ip5 ; pitch in Hertz
ivibdepth = abs(ip6*ifreq/100.0) ; vibrato depth relative to fundamental frequency
iattack = ip7 * (1.1 - .2*giseed) ; attack time with up to +-10% random deviation
giseed = frac(giseed*105.947) ; reset giseed
idecay = ip8 * (1.1 - .2*giseed) ; decay time with up to +-10% random deviation
giseed = frac(giseed*105.947)
ifiltcut tablei ip9, gif2 ; lowpass filter cutoff frequency
iattack = (iattack < 6/kr ? 6/kr : iattack) ; minimal attack length
idecay = (idecay < 6/kr ? 6/kr : idecay) ; minimal decay length
isustain = p3 - iattack - idecay
p3 = (isustain < 5/kr ? iattack+idecay+5/kr : p3) ; minimal sustain length
isustain = (isustain < 5/kr ? 5/kr : isustain)
iatt = iattack/6
isus = isustain/4
idec = idecay/6
iphase = giseed ; use same phase for all wavetables
giseed = frac(giseed*105.947)
; vibrato block
; kvibdepth linseg .1, .8*p3, 1, .2*p3, .7
kvibdepth linseg .1, .8*ip3, 1, isustain, 1, .2*ip3, .7
kvibdepth = kvibdepth* ivibdepth ; vibrato depth
kvibdepthr randi .1*kvibdepth, 5, giseed ; up to 10% vibrato depth variation
giseed = frac(giseed*105.947)
kvibdepth = kvibdepth + kvibdepthr
ivibr1 = giseed ; vibrato rate
giseed = frac(giseed*105.947)
ivibr2 = giseed
giseed = frac(giseed*105.947)
if ip6 < 0 goto vibrato1
kvibrate linseg 2.5+ivibr1, p3, 4.5+ivibr2 ; if p6 positive vibrato gets faster
goto vibrato2
vibrato1:
ivibr3 = giseed
giseed = frac(giseed*105.947)
kvibrate linseg 3.5+ivibr1, .1, 4.5+ivibr2, p3-.1, 2.5+ivibr3 ; if p6 negative vibrato gets slower
vibrato2:
kvibrater randi .1*kvibrate, 5, giseed ; up to 10% vibrato rate variation
giseed = frac(giseed*105.947)
kvibrate = kvibrate + kvibrater
kvib oscili kvibdepth, kvibrate, giwtsin
ifdev1 = -.03 * giseed ; frequency deviation
giseed = frac(giseed*105.947)
ifdev2 = .003 * giseed
giseed = frac(giseed*105.947)
ifdev3 = -.0015 * giseed
giseed = frac(giseed*105.947)
ifdev4 = .012 * giseed
giseed = frac(giseed*105.947)
kfreqr linseg ifdev1, iattack, ifdev2, isustain, ifdev3, idecay, ifdev4
kfreq = kHz * (1 + kfreqr) + kvib
if ifreq < 427.28 goto range1 ; (cpspch(8.08) + cpspch(8.09))/2
if ifreq < 608.22 goto range2 ; (cpspch(9.02) + cpspch(9.03))/2
if ifreq < 1013.7 goto range3 ; (cpspch(9.11) + cpspch(10.00))/2
goto range4
; wavetable amplitude envelopes
range1: ; for low range tones
kamp1 linseg 0, iatt, 0.002, iatt, 0.045, iatt, 0.146, iatt, \
0.272, iatt, 0.072, iatt, 0.043, isus, 0.230, isus, 0.000, isus, \
0.118, isus, 0.923, idec, 1.191, idec, 0.794, idec, 0.418, idec, \
0.172, idec, 0.053, idec, 0
kamp2 linseg 0, iatt, 0.009, iatt, 0.022, iatt, -0.049, iatt, \
-0.120, iatt, 0.297, iatt, 1.890, isus, 1.543, isus, 0.000, isus, \
0.546, isus, 0.690, idec, -0.318, idec, -0.326, idec, -0.116, idec, \
-0.035, idec, -0.020, idec, 0
kamp3 linseg 0, iatt, 0.005, iatt, -0.026, iatt, 0.023, iatt, \
0.133, iatt, 0.060, iatt, -1.245, isus, -0.760, isus, 1.000, isus, \
0.360, isus, -0.526, idec, 0.165, idec, 0.184, idec, 0.060, idec, \
0.010, idec, 0.013, idec, 0
iwt1 = gif26 ; wavetable numbers
iwt2 = gif27
iwt3 = gif28
inorm = 3949
goto end
range2: ; for low mid-range tones
kamp1 linseg 0, iatt, 0.000, iatt, -0.005, iatt, 0.000, iatt, \
0.030, iatt, 0.198, iatt, 0.664, isus, 1.451, isus, 1.782, isus, \
1.316, isus, 0.817, idec, 0.284, idec, 0.171, idec, 0.082, idec, \
0.037, idec, 0.012, idec, 0
kamp2 linseg 0, iatt, 0.000, iatt, 0.320, iatt, 0.882, iatt, \
1.863, iatt, 4.175, iatt, 4.355, isus, -5.329, isus, -8.303, isus, \
-1.480, isus, -0.472, idec, 1.819, idec, -0.135, idec, -0.082, idec, \
-0.170, idec, -0.065, idec, 0
kamp3 linseg 0, iatt, 1.000, iatt, 0.520, iatt, -0.303, iatt, \
0.059, iatt, -4.103, iatt, -6.784, isus, 7.006, isus, 11, isus, \
12.495, isus, -0.562, idec, -4.946, idec, -0.587, idec, 0.440, idec, \
0.174, idec, -0.027, idec, 0
iwt1 = gif29
iwt2 = gif30
iwt3 = gif31
inorm = 27668.2
goto end
range3: ; for high mid-range tones
kamp1 linseg 0, iatt, 0.005, iatt, 0.000, iatt, -0.082, iatt, \
0.36, iatt, 0.581, iatt, 0.416, isus, 1.073, isus, 0.000, isus, \
0.356, isus, .86, idec, 0.532, idec, 0.162, idec, 0.076, idec, 0.064, \
idec, 0.031, idec, 0
kamp2 linseg 0, iatt, -0.005, iatt, 0.000, iatt, 0.205, iatt, \
-0.284, iatt, -0.208, iatt, 0.326, isus, -0.401, isus, 1.540, isus, \
0.589, isus, -0.486, idec, -0.016, idec, 0.141, idec, 0.105, idec, \
-0.003, idec, -0.023, idec, 0
kamp3 linseg 0, iatt, 0.722, iatt, 1.500, iatt, 3.697, iatt, \
0.080, iatt, -2.327, iatt, -0.684, isus, -2.638, isus, 0.000, isus, \
1.347, isus, 0.485, idec, -0.419, idec, -.700, idec, -0.278, idec, \
0.167, idec, -0.059, idec, 0
iwt1 = gif32
iwt2 = gif33
iwt3 = gif34
inorm = 3775
goto end
range4: ; for high range tones
kamp1 linseg 0, iatt, 0.000, iatt, 0.000, iatt, 0.211, iatt, \
0.526, iatt, 0.989, iatt, 1.216, isus, 1.727, isus, 1.881, isus, \
1.462, isus, 1.28, idec, 0.75, idec, 0.34, idec, 0.154, idec, 0.122, \
idec, 0.028, idec, 0
kamp2 linseg 0, iatt, 0.500, iatt, 0.000, iatt, 0.181, iatt, \
0.859, iatt, -0.205, iatt, -0.430, isus, -0.725, isus, -0.544, isus, \
-0.436, isus, -0.109, idec, -0.03, idec, -0.022, idec, -0.046, idec, \
-0.071, idec, -0.019, idec, 0
kamp3 linseg 0, iatt, 0.000, iatt, 1.000, iatt, 0.426, iatt, \
0.222, iatt, 0.175, iatt, -0.153, isus, 0.355, isus, 0.175, isus, \
0.16, isus, -0.246, idec, -0.045, idec, -0.072, idec, 0.057, idec, \
-0.024, idec, 0.002, idec, 0
iwt1 = gif35
iwt2 = gif36
iwt3 = gif37
inorm = 4909.05
goto end
end:
kampr1 randi .02*kamp1, 10, giseed ; up to 2% wavetable amplitude variation
giseed = frac(giseed*105.947)
kamp1 = kamp1 + kampr1
kampr2 randi .02*kamp2, 10, giseed ; up to 2% wavetable amplitude variation
giseed = frac(giseed*105.947)
kamp2 = kamp2 + kampr2
kampr3 randi .02*kamp3, 10, giseed ; up to 2% wavetable amplitude variation
giseed = frac(giseed*105.947)
kamp3 = kamp3 + kampr3
awt1 poscil kamp1, kfreq, iwt1, iphase ; wavetable lookup
awt2 poscil kamp2, kfreq, iwt2, iphase
awt3 poscil kamp3, kfreq, iwt3, iphase
asig = awt1 + awt2 + awt3
asig = asig*(iampscale/inorm)
kcut linseg 0, iattack, ifiltcut, isustain, ifiltcut, idecay, 0 ; lowpass filter for brightness control
afilt tone asig, kcut
asig balance afilt, asig
; garev = garev + asig
; outs asig, asig
aleft, aright Pan p7, (asig + asig) * adamping
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 20 ; Delayed plucked string, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -1
iattack = 0.006
idecay = 1.5
isustain = p3
irelease = 0.05
ihertz = iHz
ioctave = octcps(iHz)
; Detuning of strings by 4 cents each way.
idetune = 4.0 / 1200.0
ihertzleft = cpsoct(ioctave + idetune)
ihertzright = cpsoct(ioctave - idetune)
igenleft = gisine
igenright = gicosine
kvibrato poscil 1.0 / 120.0, 7.0, 1
kenvelope transeg 0.0, iattack, -7.0, 1.0, idecay, -7.0, 0.25, isustain, 0.0, 0.125, irelease, -7.0, 0.0
ag pluck kenvelope, cpsoct(ioctave + kvibrato), iHz, igenleft, 1
agleft pluck kenvelope, ihertzleft, iHz, igenleft, 1
agright pluck kenvelope, ihertzright, iHz, igenright, 1
imsleft = 0.2 * 1000
imsright = 0.21 * 1000
adelayleft vdelay ag, imsleft, imsleft + 100
adelayright vdelay ag, imsright, imsright + 100
asignal = kenvelope * (agleft + adelayleft + agright + adelayright)
; Highpass filter to exclude speaker cone excursions.
asignal1 butterhp asignal, 32.0
asignal2 balance asignal1, asignal
aleft, aright Pan p7, asignal2 * iamplitude
p3, aleft, aright Declick 0 .006, p3, 0.06, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 21 ; Melody (Chebyshev / FM / additive), Jon Nelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -12.5
p3, adamping Damping 0.01, p3, 0.01
ip3 init 3.0
iattack = 0.05
isustain = p3
irelease = 0.1
ip6 = gichebychev
; Pitch.
i1 = iHz
k100 randi 1,10
k101 poscil 1, 5 + k100, gisine
k102 linseg 0, .5, 1, p3, 1
k100 = i1 + (k101 * k102)
; Envelope for driving oscillator.
; k1 linenr 0.5, ip3 * .3, ip3 * 2, 0.01
k1 linseg 0, ip3 * .3, .5, ip3 * 2, 0.01, isustain, 0.01, irelease, 0
; k2 line 1, p3, .5
k2 linseg 1.0, ip3, .5, isustain, .5, irelease, 0
k1 = k2 * k1
; Amplitude envelope.
k10 expseg 0.0001, iattack, 1.0, isustain, 0.8, irelease, .0001
k10 = (k10 - .0001)
; Power to partials.
k20 linseg 1.485, iattack, 1.5, (isustain + irelease), 1.485
; a1-3 are for cheby with p6=1-4
a1 poscil k1, k100 - .025, gicook3
; Tables a1 to fn13, others normalize,
a2 tablei a1, ip6, 1, .5
a3 balance a2, a1
; Try other waveforms as well.
a4 foscili 1, k100 + .04, 1, 2.005, k20, gisine
a5 poscil 1, k100, gisine
a6 = ((a3 * .1) + (a4 * .1) + (a5 * .8)) * k10
a7 comb a6, .5, 1 / i1
a8 = (a6 * .9) + (a7 * .1)
asignal balance a8, a1
aleft, aright Pan p7, asignal * iamplitude * adamping
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 22 ; Tone wheel organ by Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 26
iphase = p2
ikey = 12 * int(p4 - 6) + 100 * (p4 - 6)
ifqc = iHz
; The lower tone wheels have increased odd harmonic content.
iwheel1 = ((ikey - 12) > 12 ? gitonewheel1 : gitonewheel2)
iwheel2 = ((ikey + 7) > 12 ? gitonewheel1 : gitonewheel2)
iwheel3 = (ikey > 12 ? gitonewheel1 : gitonewheel2)
iwheel4 = 1
; Start Dur Amp Pitch SubFund Sub3rd Fund 2nd 3rd 4th 5th 6th 8th
; i1 0 6 200 8.04 8 8 8 8 3 2 1 0 4
asubfund poscil 8, .5*ifqc, iwheel1, iphase/(ikey-12)
asub3rd poscil 8, 1.4983*ifqc, iwheel2, iphase/(ikey+7)
afund poscil 8, ifqc, iwheel3, iphase/ikey
a2nd poscil 8, 2*ifqc, iwheel4, iphase/(ikey+12)
a3rd poscil 3, 2.9966*ifqc, iwheel4, iphase/(ikey+19)
a4th poscil 2, 4*ifqc, iwheel4, iphase/(ikey+24)
a5th poscil 1, 5.0397*ifqc, iwheel4, iphase/(ikey+28)
a6th poscil 0, 5.9932*ifqc, iwheel4, iphase/(ikey+31)
a8th poscil 4, 8*ifqc, iwheel4, iphase/(ikey+36)
asignal = asubfund + asub3rd + afund + a2nd + a3rd + a4th + a5th + a6th + a8th
aleft, aright Pan p7, asignal * iamplitude
p3, aleft, aright Declick 0.025, p3, .15, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 23 ; FM Bell
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 9
kc1 = 5
kc2 = 5
kvdepth = 0.0125
kvrate = 5.1
ifn1 = 1
ifn2 = 1
ifn3 = 1
ifn4 = 1
ivfn = 1
aout fmbell iamplitude, iHz, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn
aenv transeg 0.0, .001, -6, 1.0, 9, -6, 0
aout = aout * aenv
aleft, aright Pan p7, aout
p3, aleft, aright Declick 0.001, p3, .5, aleft, aright
AssignSend p1, 0.0, 0.0, 0.1, 1.0
SendOut p1, aleft, aright
endin
instr 24 ; Modeled Guitar, Jeff Livingston
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The model takes pluck position, and pickup position (in % of string length), and generates
; a pluck excitation signal, representing the string displacement. The pluck consists
; of a forward and backward traveling displacement wave, which are recirculated thru two
; separate delay lines, to simulate the one dimensional string waveguide, with
; fixed ends.
;
; Losses due to internal friction of the string, and with air, as well as
; losses due to the mechanical impedance of the string terminations are simulated by
; low pass filtering the signal inside the feedback loops.
; Delay line outputs at the bridge termination are summed and fed into an IIR filter
; modeled to simulate the lowest two vibrational modes (resonances) of the guitar body.
; The theory implies that force due to string displacement, which is equivalent to
; displacement velocity times bridge mechanical impedance, is the input to the guitar
; body resonator model. Here we have modified the transfer fuction representing the bridge
; mech impedance, to become the string displacement to bridge input force transfer function.
; The output of the resulting filter represents the displacement of the guitar's top plate,
; and sound hole, since thier respective displacement with be propotional to input force.
; (based on a simplified model, viewing the top plate as a force driven spring).
;
; The effects of pluck hardness, and contact with frets during pluck release,
; have been modeled by injecting noise into the initial pluck, proportional to initial
; string displacement.
;
; Note on pluck shape: Starting with a triangular displacment, I found a decent sounding
; initial pluck shape after some trial and error. This pluck shape, which is a linear
; ramp, with steep fall off, doesn't necessarily agree with the pluck string models I've
; studied. I found that initial pluck shape significantly affects the realism of the
; sound output, but I the treatment of this topic in musical acoustics literature seems
; rather limited as far as I've encountered.
;
; Original pfields
; p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
; in st dur amp pch plklen fbfac pkupPos pluckPos brightness vibf vibd vibdel
; i01.2 0.5 0.75 5000 7.11 .85 0.9975 .0 .25 1 0 0 0
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 13
p3, adamping Damping 0.003, p3,.03
ip4 init iamplitude
ip6 init 0.85
ip7 init 0.9975
ip8 init 0
ip9 init 0.25
ip10 init 1.0
ip11 init 0.0
ip12 init 0.0
ip13 init 0.0
afwav init 0
abkwav init 0
abkdout init 0
afwdout init 0
iEstr init 1.0 / cpspch(6.04)
ifqc init iHz ; cpspch(p5)
; note:delay time=2x length of string (time to traverse it)
idlt init 1.0 / ifqc
; print iHz, ifqc, idlt
ipluck = 0.5 * idlt * ip6 * ifqc / cpspch(8.02)
ifbfac = ip7 ; feedback factor
; (exponentialy scaled) additive noise to add hi freq content
ibrightness = ip10 * exp(ip6 * log(2)) / 2
ivibRate = ip11
ivibDepth pow 2, ip12 / 12
; vibrato depth, +,- ivibDepth semitones
ivibDepth = idlt - 1.0 / (ivibDepth * ifqc)
; vibrato start delay (secs)
ivibStDly = ip13
; termination impedance model
; cutoff freq of LPF due to mech. impedance at the nut (2kHz-10kHz)
if0 = 10000
; damping parameter of nut impedance
iA0 = ip7
ialpha = cos(2 * 3.14159265 * if0 * 1 / sr)
; FIR LPF model of nut impedance, H(z)=a0+a1z^-1+a0z^-2
ia0 = 0.3 * iA0 / (2 * (1 - ialpha))
ia1 = iA0 - 2 * ia0
; NOTE each filter pass adds a sampling period delay,so subtract 1/sr from tap time to compensate
; determine (in crude fashion) which string is being played
; icurStr = (ifqc > cpspch(6.04) ? 2 : 1)
; icurStr = (ifqc > cpspch(6.09) ? 3 : icurStr)
; icurStr = (ifqc > cpspch(7.02) ? 4 : icurStr)
; icurStr = (ifqc > cpspch(7.07) ? 5 : icurStr)
; icurStr = (ifqc > cpspch(7.11) ? 6 : icurStr)
ipupos = ip8 * idlt / 2 ; pick up position (in % of low E string length)
ippos = ip9 * idlt / 2 ; pluck position (in % of low E string length)
isegF = 1 / sr
isegF2 = ipluck
iplkdelF = (ipluck / 2 > ippos ? 0 : ippos - ipluck / 2)
isegB = 1 / sr
isegB2 = ipluck
iplkdelB = (ipluck / 2 > idlt / 2 - ippos ? 0 : idlt / 2 - ippos - ipluck / 2)
; EXCITATION SIGNAL GENERATION
; the two excitation signals are fed into the fwd delay represent the 1st and 2nd
; reflections off of the left boundary, and two accelerations fed into the bkwd delay
; represent the the 1st and 2nd reflections off of the right boundary.
; Likewise for the backward traveling acceleration waves, only they encouter the
; terminationsin the opposite order.
ipw = 1
ipamp = ip4 * ipluck ; 4 / ipluck
aenvstrf linseg 0, isegF, -ipamp / 2, isegF2, 0
adel1 delayr idlt
; initial forward traveling wave (pluck to bridge)
aenvstrf1 deltapi iplkdelF
; first forward traveling reflection (nut to bridge)
aenvstrf2 deltapi iplkdelB + idlt / 2
delayw aenvstrf
; inject noise for attack time string fret contact, and pre pluck vibrations against pick
anoiz rand ibrightness
aenvstrf1 = aenvstrf1 + anoiz*aenvstrf1
aenvstrf2 = aenvstrf2 + anoiz*aenvstrf2
; filter to account for losses along loop path
aenvstrf2 filter2 aenvstrf2, 3, 0, ia0, ia1, ia0
; combine into one signal (flip refl wave's phase)
aenvstrf = aenvstrf1 - aenvstrf2
; initial backward excitation wave
aenvstrb linseg 0, isegB, - ipamp / 2, isegB2, 0
adel2 delayr idlt
; initial bdwd traveling wave (pluck to nut)
aenvstrb1 deltapi iplkdelB
; first forward traveling reflection (nut to bridge)
aenvstrb2 deltapi idlt / 2 + iplkdelF
delayw aenvstrb
; initial bdwd traveling wave (pluck to nut)
; aenvstrb1 delay aenvstrb, iplkdelB
; first bkwd traveling reflection (bridge to nut)
; aenvstrb2 delay aenvstrb, idlt/2+iplkdelF
; inject noise
aenvstrb1 = aenvstrb1 + anoiz*aenvstrb1
aenvstrb2 = aenvstrb2 + anoiz*aenvstrb2
; filter to account for losses along loop path
aenvstrb2 filter2 aenvstrb2, 3, 0, ia0, ia1, ia0
; combine into one signal (flip refl wave's phase)
aenvstrb = aenvstrb1 - aenvstrb2
; low pass to band limit initial accel signals to be < 1/2 the sampling freq
ainputf tone aenvstrf, sr * 0.9 / 2
ainputb tone aenvstrb, sr * 0.9 / 2
; additional lowpass filtering for pluck shaping\
; Note, it would be more efficient to combine stages into a single filter
ainputf tone ainputf, sr * 0.9 / 2
ainputb tone ainputb, sr * 0.9 / 2
; Vibrato generator
avib poscil ivibDepth, ivibRate, 1
avibdl delayr (ivibStDly * 1.1) + 0.001
avibrato deltapi ivibStDly
delayw avib
; Dual Delay line,
; NOTE: delay length longer than needed by a bit so that the output at t=idlt will be interpolated properly
;forward traveling wave delay line
afd delayr (idlt + ivibDepth) * 1.1
; output tap point for fwd traveling wave
afwav deltapi ipupos
; output at end of fwd delay (left string boundary)
afwdout deltapi idlt - 1 / sr + avibrato
; lpf/attn due to reflection impedance
afwdout filter2 afwdout, 3, 0, ia0, ia1, ia0
delayw ainputf + afwdout * ifbfac * ifbfac
; backward trav wave delay line
abkwd delayr (idlt + ivibDepth) * 1.1
; output tap point for bkwd traveling wave
abkwav deltapi idlt / 2 - ipupos
; output at the left boundary
; abkterm deltapi idlt/2
; output at end of bkwd delay (right string boundary)
abkdout deltapi idlt - 1 / sr + avibrato
abkdout filter2 abkdout, 3, 0, ia0, ia1, ia0
delayw ainputb + abkdout * ifbfac * ifbfac
; resonant body filter model, from Cuzzucoli and Lombardo
; IIR filter derived via bilinear transform method
; the theoretical resonances resulting from circuit model should be:
; resonance due to the air volume + soundhole = 110Hz (strongest)
; resonance due to the top plate = 220Hz
; resonance due to the inclusion of the back plate = 400Hz (weakest)
aresbod filter2 (afwdout + abkdout), 5, 4, 0.000000000005398681501844749, .00000000000001421085471520200, -.00000000001076383426834582, -00000000000001110223024625157, .000000000005392353230604385, -3.990098622573566, 5.974971737738533, -3.979630684599723, .9947612723736902
asig = (1500 * (afwav + abkwav + aresbod * .000000000000000000003)) * adamping
aleft, aright Pan p7, asig
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 25 ; Epicycloid or Spirograph curve, Mikelson TODO: Find better parameters?
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This set of parametric equations defines the path traced by
; a point on a circle of radius B rotating outside a circle of
; radius A.
; p1 p2 p3 p4 p5 p6 p7 p8
; Start Dur Amp Frqc A B Hole
; i 2 0 6 8000 8.00 10 2 1
; i 2 4 4 . 7.11 5.6 0.4 0.8
; i 2 + 4 . 8.05 2 8.5 0.7
; i 2 . 2 . 8.02 4 5 0.6
; i 2 . 2 . 8.02 5 0.5 1.2
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 0
ifqc init iHz
ifqci init iHz ; gi2fqc
; gi2fqc init ifqc
ip4 init iamplitude
ia init 2 ; p6
ib init 8.5 ; p7
ihole init 0.7 ; p8
iscale init 1 / (ia + 2 * ib)
kampenv linseg 0, .02, ip4 * iscale, p3 - .04, ip4 * iscale, .02, 0
kptchenv linseg ifqci, .2 * p3, ifqc, .8 * p3, ifqc
kvibenv linseg 0, .5, 0, .2, 1, .2, 1
kvibr oscili 20, 8, 1
kfqc = kptchenv + kvibr * kvibenv
; Sine and Cosine
acos1 oscili ia + ib, kfqc, 1, .25
acos2 oscili ib * ihole, (ia - ib) / ib * kfqc, 1, .25
ax = acos1 + acos2
asin1 oscili ia + ib, kfqc, 1
asin2 oscili ib, (ia - ib) / ib * kfqc, 1
ay = asin1 - asin2
aleft = kampenv * ax
aright = kampenv * ay
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 26 ; Hypocycloid or Spirograph curve, Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This set of parametric equations defines the path traced by
; a point on a circle of radius B rotating inside a circle of
; radius A.
; p1 p2 p3 p4 p5 p6 p7 p8
; Start Dur Amp Frqc A B Hole
; i 3 16 6 8000 8.00 10 2 1
; i 3 20 4 . 7.11 5.6 0.4 0.8
; i 3 + 4 . 8.05 2 8.5 0.7
; i 3 . 2 . 8.02 4 5 0.6
; i 3 . 2 . 8.02 5 0.5 1.2
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 0
ifqc init iHz
ip4 init iamplitude
ifqci init iHz
;ifqci init gi3fqc
;gi3fqc init ifqc
ia = 0.6 ; p6
ib = 0.4 ; p7
ihole = 0.8 ; p8
iscale = (ia < ib ? 1 / ib : 1 / ia)
kampenv linseg 0, .1, ip4 * iscale, p3 - .2, ip4 * iscale, .1, 0
kptchenv linseg ifqci, .2 * p3, ifqc, .8 * p3, ifqc
kvibenv linseg 0, .5, 0, .2, 1, .2, 1
kvibr oscili 20, 8, 1
kfqc = kptchenv+kvibr*kvibenv
; Sine and Cosine
acos1 oscili ia - ib, kfqc, 1, .25
acos2 oscili ib * ihole, (ia - ib) / ib * kfqc, 1, .25
ax = acos1 + acos2
asin1 oscili ia-ib, kfqc, 1
asin2 oscili ib, (ia - ib) / ib * kfqc, 1
ay = asin1 - asin2
aleft = kampenv * ax
aright = kampenv * ay
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 27 ; Banchoff Klein Bottle, Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; p1 p2 p3 p4 p5 p6 p7
; Start Dur Amp Frqc U V
; i 4 32 6 6000 6.00 3 2
; i 4 36 4 . 5.11 5.6 0.4
; i 4 + 4 . 6.05 2 8.5
; i 4 . 2 . 6.02 4 5
; i 4 . 2 . 6.02 5 0.5
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 12
ifqc init iHz
ip4 init iamplitude
iu init 5 ; p6
iv init 0.5 ; p7
irt2 init sqrt(2)
aampenv linseg 0, 0.02, ip4, p3 - 0.04, ip4, 0.02, 0
; Cosines
acosu oscili 1, iu * ifqc, 1, .25
acosu2 oscili 1, iu * ifqc / 2, 1, .25
acosv oscili 1, iv * ifqc, 1, .25
; Sines
asinu oscili 1, iu * ifqc, 1
asinu2 oscili 1, iu * ifqc / 2, 1
asinv oscili 1, iv * ifqc, 1
; Compute X and Y
ax = acosu * (acosu2 * (irt2 + acosv) + asinu2 * asinv * acosv)
ay = asinu * (acosu2 * (irt2 + acosv) + asinu2 * asinv * acosv)
; Low frequency rotation in spherical coordinates z, phi, theta.
klfsinth oscili 1, 4, 1
klfsinph oscili 1, 1, 1
klfcosth oscili 1, 4, 1, .25
klfcosph oscili 1, 1, 1, .25
aox = -ax * klfsinth + ay * klfcosth
aoy = -ax * klfsinth * klfcosph - ay * klfsinth * klfcosph + klfsinph
aleft = aampenv * aox
aright = aampenv * aoy
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
endin
instr 28 ; Low-level plucked string, Comajuncosas TODO: Fix this.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Low level implementation
; of the classic Karplus-Strong algorithm
; fixed pitches : no vibratos or glissandi !
; implemented by Josep M Comajuncosas / Aug98
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Initialised with a wide pulse (buzz)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; f1 0 32769 10 1; sine wave
; t 0 90
; p1 p2 p3 p4 p5 p6
; i1 0 15 6.04 0.1 1500
; i1 2 15 6.11 0.4 1500
; i1 4 15 7.04 0.8 2500
; i1 6 15 7.09 0.5 1100
; i1 8 15 8.02 0.3 4500
; i1 10 15 8.06 0.2 1300
; e
; i1 0.11 15 6.09 .11 1600
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 27
ip5 = 0.3
ip6 = iamplitude
ipluck = ip5 ; p5; pluck position ( 0 to 1 )
ifreq = iHz ; cpspch(p4)
idlts = int(kr / ifreq - 0.5) ; set waveguide length (an integer number of samples)
idlt = idlts / kr ; convert to seconds
kdlt init idlts ; counter for string initialisation
irems = kr / ifreq - idlts + 0.5 ; remaining time in fractions of a sample
; set phase delay induced by the FIR lowpass filter
; and the fractional delay in the waveguide
iph = (1 - irems) / (1 + irems) ; allpass filter parameter
; approximation valid at low frequencies relative to sr
awgout init 0
if kdlt < 0 goto continue
initialise:
;abuzz buzz p6, 1 / idlt, p6 * idlt, 1, ipluck
abuzz buzz ip6, 1 / idlt, ip6 * idlt, 1, ipluck
; fill the buffer with a bandlimited pulse
; knh controls bandwidth
; harmonic richness grows with volume
acomb delay abuzz, ipluck / idlt
apulse = abuzz - acomb
; implement pluck point as a FIR comb filter
continue:
areturn delayr idlt
ainput = apulse + areturn
alpf filter2 ainput, 2, 0, 0.5, 0.5
; lowpass filter to simulate energy losses
; could be variable to allow damping control
awgout filter2 alpf, 2, 1, iph, 1, iph
; allpass filter to fine tune the instrument
; should be compensated in the delay line
; for better pitch accuracy
delayw awgout
awgout dcblock awgout ; this seems necessary
; ideally should be inside the loop, but then
; the phase delay should be compensated
; for better pitch accuracy
; out awgout
aleft, aright Pan p7, awgout
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1.0
SendOut p1, aleft, aright
kdlt = kdlt - 1
anoize = 0 ; supress last impulse when waveguide is loaded
;tricky but easy...
endin
instr 29 ; Bass Physical Model, Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; p1 p2 p3 p4 p5 p6
; Start Dur Amp Pitch PluckDur
; i2 128 4 1400 6.00 0.25
; i2 + 2 1200 6.01 0.25
; i2 . 4 1000 6.05 0.5
; i2 . 2 500 6.04 1
; i2 . 4 1000 6.03 0.5
; i2 . 16 1000 6.00 0.5
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 21
; Initializations
ifqc = iHz
ip4 = iamplitude
ip6 = 0.5
ipluck = 1 / ifqc * ip6
kcount init 0
adline init 0
ablock2 init 0
ablock3 init 0
afiltr init 0
afeedbk init 0
koutenv linseg 0, .01, 1, p3 - .11 , 1, .1 , 0 ; Output envelope
kfltenv linseg 0, 1.5, 1, 1.5, 0
; This envelope loads the string with a triangle wave.
kenvstr linseg 0, ipluck / 4, -ip4 / 2, ipluck / 2, ip4 / 2, ipluck / 4, 0, p3 - ipluck, 0
aenvstr = kenvstr
ainput tone aenvstr, 200
; DC Blocker
ablock2 = afeedbk - ablock3 + .99 * ablock2
ablock3 = afeedbk
ablock = ablock2
; Delay line with filtered feedback
adline delay ablock + ainput, 1 / ifqc - 15 / sr
afiltr tone adline, 400
; Resonance of the body
abody1 reson afiltr, 110, 40
abody1 = abody1 / 5000
abody2 reson afiltr, 70, 20
abody2 = abody2 / 50000
afeedbk = afiltr
aout = afeedbk
; out 50 * koutenv * (aout + kfltenv * (abody1 + abody2))
asignal = 50 * koutenv * (aout + kfltenv * (abody1 + abody2))
aleft, aright Pan p7, asignal
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 30 ; Perry Cook Slide Flute, Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; p1 p2 p3 p4 p5 p6 p7 p8 p9
; Start Dur Amplitude Pitch Pressure Breath Feedbk1 Feedbk2
; i3 80 16 6000 8.00 0.9 0.036 0.4 0.4
; i3 + 4 . 8.01 0.95 . . .
; i3 . 4 . 8.03 0.97 . . .
; i3 . 4 . 8.04 0.98 . . .
; i3 . 4 . 8.05 0.99 . . .
; i3 . 16 . 9.00 1.0 . . .
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -3
aflute1 init 0
ifqc = iHz ; cpspch(p5)
ip4 = iamplitude
ip6 = 0.99
ip7 = 0.036
ip8 = 0.4
ip9 = 0.4
ipress = ip6
ibreath = ip7
ifeedbk1 = ip8
ifeedbk2 = ip9
; Flow setup
kenv1 linseg 0, .06, 1.1 * ipress, .2, ipress, p3 - .16, ipress, .02, 0
kenv2 linseg 0, .01, 1, p3 - .02, 1, .01, 0
kenvibr linseg 0, .5, 0, .5, 1, p3 - 1, 1 ; Vibrato envelope
; The values must be approximately -1 to 1 or the cubic will blow up.
aflow1 rand kenv1
kvibr oscili 0.02 * kenvibr, 5.3, gisine ; 3
; ibreath can be used to adjust the noise level.
asum1 = ibreath * aflow1 + kenv1 + kvibr
asum2 = asum1 + aflute1 * ifeedbk1
afqc = 1 / ifqc - asum1 / 20000 -9 / sr + ifqc / 12000000
; Embouchure delay should be 1/2 the bore delay
; ax delay asum2, (1/ifqc-10/sr)/2
atemp1 delayr 1 / ifqc / 2.0
ax deltapi afqc / 2 ; - asum1/ifqc/10 + 1/1000
delayw asum2
apoly = ax - ax * ax * ax
asum3 = apoly + aflute1 * ifeedbk2
avalue tone asum3, 2000
; Bore, the bore length determines pitch. Shorter is higher pitch.
atemp2 delayr 1 / ifqc
aflute1 deltapi afqc
delayw avalue
; out avalue * p4 * kenv2
asignal = avalue * ip4 * kenv2
aleft, aright Pan p7, asignal
p3, aleft, aright Declick 0.003, p3, 0.05, aleft, aright
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 31, 32 ; Perry Cook Clarinet, Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; p1 p2 p3 p4 p5 p6 p7 p8 p9
; Start Dur Amp Pitch Press Filter Embouchure Reed Table
; (20000) (8.00-9.00) (0-2) (500-1200) (0-1)
; i4 32 16 6000 8.00 1.5 1000 0.2 1
; i4 + 4 . 8.01 1.8 1000 0.2 1
; i4 . 2 . 8.03 1.6 1000 0.2 1
; i4 . 2 . 8.04 1.7 1000 0.2 1
; i4 . 2 . 8.05 1.7 1000 0.2 1
; i4 . 2 . 9.03 1.7 1000 0.2 1
; i4 . 4 . 8.00 1.7 1000 0.2 1
; i4 + 16 . 9.00 1.8 1000 0.2 1
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -2
ip4 = iamplitude
ip6 = 1.6
ip7 = 1000
ip8 = 0.2
ip9 = gireedtable
areedbell init 0
ifqc = iHz; cpspch(p5)
ifco = ip7
ibore = 1 / ifqc - 15 / sr
; I got the envelope from Perry Cooke's Clarinet.
kenv1 linseg 0, .005, .55 + .3 * ip6, p3 - .015, .55 + .3 * ip6, .01, 0
kenvibr linseg 0, .1, 0, .9, 1, p3 - 1, 1 ; Vibrato envelope
; Supposedly has something to do with reed stiffness?
kemboff = ip8
; Breath Pressure
avibr oscil .1 * kenvibr, 5, gisine ; 3
apressm = kenv1 + avibr
; Reflection filter from the bell is lowpass.
arefilt tone areedbell, ifco
; The delay from bell to reed.
abellreed delay arefilt, ibore
; Back pressure and reed table look up.
asum2 = - apressm -.95 * arefilt - kemboff
areedtab tablei asum2 / 4 + .34, ip9, 1, .5
amult1 = asum2 * areedtab
; Forward Pressure
asum1 = apressm + amult1
areedbell delay asum1, ibore
aofilt atone areedbell, ifco
; out aofilt * p4
asignal = aofilt * ip4
aleft, aright Pan p7, asignal
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 33 ; Basic Granular Synthesis, Mikelson
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; f1 0 65536 1 "hahaha.aif" 0 4 0
; f2 0 1024 7 0 224 1 800 0
; f3 0 8192 7 1 8192 -1
; f4 0 1024 7 0 512 1 512 0
; f5 0 1024 10 1 .3 .1 0 .2 .02 0 .1 .04
; f6 0 1024 10 1 0 .5 0 .33 0 .25 0 .2 0 .167
; a0 14 50
; p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
; Start Dur Amp Freq GrTab WinTab FqcRng Dens Fade
; i1 0.0 6.5 700 9.00 5 4 .210 200 1.8
; i1 3.2 3.5 800 7.08 . 4 .042 100 0.8
; i1 5.1 5.2 600 7.10 . 4 .032 100 0.9
; i1 7.2 6.6 900 8.03 . 4 .021 150 1.6
; i1 21.3 4.5 1000 9.00 . 4 .031 150 1.2
; i1 26.5 13.5 1100 6.09 . 4 .121 150 1.5
; i1 30.7 9.3 900 8.05 . 4 .014 150 2.5
; i1 34.2 8.8 700 10.02 . 4 .14 150 1.6
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 52
ip4 = iamplitude
ip5 = iHz
ip6 = gigrtab
ip7 = giwintab
ip8 = 0.033
ip9 = 150
ip10 = 1.6
idur = p3
iamp = iamplitude ; p4
ifqc = iHz ; cpspch(p5)
igrtab = ip6
iwintab = ip7
ifrng = ip8
idens = ip9
ifade = ip10
igdur = 0.2
kamp linseg 0, ifade, 1, idur - 2 * ifade, 1, ifade, 0
; Amp Fqc Dense AmpOff PitchOff GrDur GrTable WinTable MaxGrDur
aoutl grain ip4, ifqc, idens, 100, ifqc * ifrng, igdur, igrtab, iwintab, 5
aoutr grain ip4, ifqc, idens, 100, ifqc * ifrng, igdur, igrtab, iwintab, 5
; outs aoutl*kamp, aoutr*kamp
aleft = aoutl * kamp * iamplitude
aright = aoutr * kamp * iamplitude
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 34 ; Chebyshev Waveshaping Drone, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; p1 p2 p3 p4 p5 p6 p7 p8
; insno onset duration fundamental numerator denominator velocity pan
; What I want here is just intonation C major 7, G major 7, G 7, C major with voice leading.
; i 1 0 60 60 1 1 60 -0.875
; i 1 0 180 60 3 2 60 0.000
; i 1 0 60 60 28 15 60 0.875
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, -1
iattack = 0.02
idecay = 0.05
isustain = p3
irelease = 0.25
ihertz = iHz
iamp = iamplitude
kenvelope transeg 0.0, iattack / 2.0, 2.5, iamp / 2.0, iattack / 2.0, -2.5, iamp, isustain, 0.0, iamp, idecay / 2.0, 2.5, iamp / 2.0, idecay / 2.0, -2.5, 0.0
asignal poscil3 kenvelope, ihertz, giharmonics
asignal distort asignal, 0.4, gidistortion
aleft, aright reverbsc asignal, asignal, 0.85, 8000, sr, 0.375
aleft, aright Pan p7, aleft + aright
p3, aleft, aright Declick iattack, p3, irelease, aleft, aright
AssignSend p1, 0.2, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 35 ; Reverb Sine, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 8.5
iattack = 0.02
idecay = 0.03
isustain = p3
irelease = 0.25
kenvelope transeg 0.0, iattack, 2.5, iamplitude, isustain, 0.0, iamplitude, idecay, 2.5, 0.0
asignal poscil3 kenvelope, iHz, gicosine
aleft, aright reverbsc asignal, asignal, 0.90, 10000, sr, 0.775
aleft, aright Pan p7, (aleft + aright) * 2.0
p3, aleft, aright Declick 0.003, p3, .05, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 36 ; Reverb Sine 2, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 4.5
iattack = 0.006
idecay = 0.03
isustain = p3
irelease = 0.25
kenvelope transeg 0.0, iattack, -2.5, iamplitude, isustain, 0.0, iamplitude, idecay, 2.5, 0.0
asignal poscil3 kenvelope, iHz, gicosine
aleft, aright reverbsc asignal, asignal, 0.80, 10000, sr, 0.375
aleft, aright Pan p7, (aleft + aright) * 2.0
p3, aleft, aright Declick iattack, isustain, idecay, aleft, aright
; print p3, iamplitude, iattack, idecay, isustain
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
instr 37 ; FM with reverberated modulator, Michael Gogins
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
pset 0, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0
iHz,kHz,iamplitude,idB NoteOn p4, p5, 0
iattack = 0.004
idecay = 8.0
isustain = p3
irelease = 0.05
icarrier = 1
imodulator = 2.0
imodulatorAmplitude = 8
ifrequencyb = iHz * 1.003
icarrierb = icarrier * 1.004
aenvelope transeg 0.0, iattack, -9.0, 1.0, isustain, -5.0, 0.625,irelease, -4.0, 0.0
kfmenvelope transeg 0.0, iattack, -9.0, 1.5, isustain, -5.0, 0.525, irelease, -4.0, 0.0
; Use poscil to get arate FM.
amodulator poscil imodulatorAmplitude * kfmenvelope, iHz * imodulator, gisine
amodl, amodr reverbsc amodulator, amodulator, 0.5, sr * 0.75
asignal poscil 1.0, iHz * amodl, gisine
asignal = asignal * aenvelope
aleft, aright Pan p7, asignal * iamplitude
aleft, aright Pan p7, asignal * iamplitude
p3, aleft, aright Declick iattack, p3, irelease, aleft, aright
AssignSend p1, 0.0, 0.0, 0.2, 1
SendOut p1, aleft, aright
endin
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; B U S S E F F E C T S
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
instr 200 ; Chorus by J. Lato
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; p4 = delay in milliseconds
; p5 = divisor of p4
; Chorus effect, borrowed from http://www.jlpublishing.com/Csound.htm
; I made some of its parameters accesible trhough score.
a1 MixerReceive 200, 0
a2 MixerReceive 200, 1
idlyml = p4 ;delay in milliseconds
k1 poscil idlyml/p5, 1, 2
ar1l vdelay3 a1, idlyml/5+k1, 900 ;delayed sound 1
ar1r vdelay3 a2, idlyml/5+k1, 900 ;delayed sound 1
k2 poscil idlyml/p5, .995, 2
ar2l vdelay3 a1, idlyml/5+k2, 700 ;delayed sound 2
ar2r vdelay3 a2, idlyml/5+k2, 700 ;delayed sound 2
k3 poscil idlyml/p5, 1.05, 2
ar3l vdelay3 a1, idlyml/5+k3, 700 ;delayed sound 3
ar3r vdelay3 a2, idlyml/5+k3, 700 ;delayed sound 3
k4 poscil idlyml/p5, 1, 2
ar4l vdelay3 a1, idlyml/5+k4, 900 ;delayed sound 4
ar4r vdelay3 a2, idlyml/5+k4, 900 ;delayed sound 4
aoutl = (a1+ar1l+ar2l+ar3l+ar4l)*.5
aoutr = (a2+ar1r+ar2r+ar3r+ar4r)*.5
; To the reverb unit
MixerSend aoutl, 200, 210, 0
MixerSend aoutr, 200, 210, 1
; To the output mixer
MixerSend aoutl, 200, 220, 0
MixerSend aoutr, 200, 220, 1
endin
instr 210 ; Reverb by Sean Costello / J. Lato
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
idelay = p4
ipitchmod = p5
icutoff = p6
ainL MixerReceive 210, 0
ainR MixerReceive 210, 1
aoutL, aoutR reverbsc ainL, ainR, idelay, icutoff, sr, ipitchmod, 0
; To the master output.
MixerSend aoutL, 210, 220, 0
MixerSend aoutR, 210, 220, 1
endin
instr 220 ; Master output
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; p4 = level
; p5 = fadein + fadeout
; Applies a bass enhancement, compression and fadeout
; to the whole piece, outputs signals, and clears the mixer.
; Receive audio from the master mixer buss.
a1 MixerReceive 220, 0
a2 MixerReceive 220, 1
; Enhance the bass.
al1 butterlp a1, 100
al2 butterlp a2, 100
a1 = al1 * 1.5 + a1
a2 = al2 * 1.5 + a2
; Remove DC bias.
a1blocked dcblock a1
a2blocked dcblock a2
; Apply compression.
a1 compress a1, a1, 0, 48, 60, 3, .01, .05, .05
a2 compress a2, a2, 0, 48, 60, 3, .01, .05, .05
; Output audio.
outs a1blocked, a2blocked
; Reset the busses for the next kperiod.
MixerClear
endin
</CsInstruments>
<CsScore>
; EFFECTS MATRIX
; Chorus to Reverb
i 1 0 0 200 210 0.05
; Chorus to Output
i 1 0 0 200 220 0.05
; Reverb to Output
i 1 0 0 210 220 0.125
; MASTER EFFECT CONTROLS
; Chorus.
; Insno Start Dur Delay Divisor of Delay
i 200 0 -1 10 30
; Reverb.
; Insno Start Dur Delay Pitchmod Cutoff
i 210 0 -1 0.90 0.02 25000
; Master output.
; Insno Start Dur Fadein Fadeout
i 220 0 -1 0.1 0.1
</CsScore>
</CsoundSynthesizer>
'''
self.csound.setCSD(self.csoundOrchestra)
self.csound.setCommand(self.csoundCommand)
instruments = self.csound.getCsoundFile().getInstrumentNames()
for number, name in instruments.items():
print 'Instr %4d: %s' % (number, name)
print
def createScore(self):
print 'CREATING SCORE...'
c = 3.99847
y = 0.5
onsetIncrement = 4.0
onsetIncrementIncrement = 0.98
duration = 4.0
time_ = 0.0
for i in xrange(250):
instrument = int(2.0 + ((i * 19.7) % 104.2) % 36.0)
time_ = time_ + (onsetIncrement * 0.5)
onsetIncrement = onsetIncrement * onsetIncrementIncrement
y1 = y * c * (1.0 - y)
y = y1
key = int(36.0 + (y1 * 60.0))
velocity = 20 + ((i * 43.1) % 18.3) % 18.0
pan = ((i * 301.3) * 3.0) % 2.0 - 1.0
self.csound.addNote(instrument, time_, duration, key, velocity, pan)
self.scoreTime = time_ + duration
self.csound.addScoreLine('e 5.0')
print self.csound.getScore()
print
csoundComposition = CsoundComposition()
if len(sys.argv) > 1:
csoundComposition.renderingMode = sys.argv[1]
else:
csoundComposition.renderingMode = 'master'
csoundComposition.dacName = 'dac'
csoundComposition.render()
|