1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
/*
cladsynth.cpp
(c) Victor Lazzarini, 2019
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include <plugin.h>
#include <pstream.h>
#include <iostream>
#include <sstream>
#ifdef __MACH__
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif
const char *code = R"(
#define FMAXLEN ((float)0x40000000)
#define PHMASK 0x3fffffff
#define PI 3.1415926f
inline void AtomicAdd(volatile __global float *source, const float operand) {
union {
unsigned int intVal;
float floatVal;
} newVal;
union {
unsigned int intVal;
float floatVal;
} prevVal;
do {
prevVal.floatVal = *source;
newVal.floatVal = prevVal.floatVal + operand;
} while (atomic_cmpxchg((volatile __global unsigned int *)source,
prevVal.intVal, newVal.intVal) != prevVal.intVal);
}
kernel void sample(global float *out, global float *frame,
global long *ph,
global float *amps, float pitch, int bins,
int vsize, float sr) {
int t = get_global_id(0);
int n = t%vsize; /* sample index */
int h = t/vsize; /* bin index */
int k = h<<1;
long lph;
float a = amps[h], ascl = ((float)n)/vsize;
float fscal = pitch*FMAXLEN/sr;
lph = (ph[h] + (long)(n*round(frame[k+1]*fscal))) & PHMASK;
a += ascl*(frame[k] - a);
AtomicAdd(&out[n], a*sin((2*PI*lph)/FMAXLEN));
}
kernel void update(global float *out, global float *frame,
global long *ph, global float *amps, float pitch, int bins,
int vsize, float sr){
int h = get_global_id(0);
int k = h << 1,i,j;
/* update phases and amps */
ph[h] = (ph[h] + (long)(vsize*round(pitch*frame[k+1]*FMAXLEN/sr))) & PHMASK;
amps[h] = frame[k];
if(h >= vsize) return;
out[h] = 0.f;
}
)";
const char * cl_error_string(int err) {
switch (err) {
case CL_SUCCESS: return "Success!";
case CL_DEVICE_NOT_FOUND: return "Device not found.";
case CL_DEVICE_NOT_AVAILABLE: return "Device not available";
case CL_COMPILER_NOT_AVAILABLE: return "Compiler not available";
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
return "Memory object allocation failure";
case CL_OUT_OF_RESOURCES: return "Out of resources";
case CL_OUT_OF_HOST_MEMORY: return "Out of host memory";
case CL_PROFILING_INFO_NOT_AVAILABLE:
return "Profiling information not available";
case CL_MEM_COPY_OVERLAP: return "Memory copy overlap";
case CL_IMAGE_FORMAT_MISMATCH: return "Image format mismatch";
case CL_IMAGE_FORMAT_NOT_SUPPORTED: return "Image format not supported";
case CL_BUILD_PROGRAM_FAILURE: return "Program build failure";
case CL_MAP_FAILURE: return "Map failure";
case CL_INVALID_VALUE: return "Invalid value";
case CL_INVALID_DEVICE_TYPE: return "Invalid device type";
case CL_INVALID_PLATFORM: return "Invalid platform";
case CL_INVALID_DEVICE: return "Invalid device";
case CL_INVALID_CONTEXT: return "Invalid context";
case CL_INVALID_QUEUE_PROPERTIES: return "Invalid queue properties";
case CL_INVALID_COMMAND_QUEUE: return "Invalid command queue";
case CL_INVALID_HOST_PTR: return "Invalid host pointer";
case CL_INVALID_MEM_OBJECT: return "Invalid memory object";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
return "Invalid image format descriptor";
case CL_INVALID_IMAGE_SIZE: return "Invalid image size";
case CL_INVALID_SAMPLER: return "Invalid sampler";
case CL_INVALID_BINARY: return "Invalid binary";
case CL_INVALID_BUILD_OPTIONS: return "Invalid build options";
case CL_INVALID_PROGRAM: return "Invalid program";
case CL_INVALID_PROGRAM_EXECUTABLE: return "Invalid program executable";
case CL_INVALID_KERNEL_NAME: return "Invalid kernel name";
case CL_INVALID_KERNEL_DEFINITION: return "Invalid kernel definition";
case CL_INVALID_KERNEL: return "Invalid kernel";
case CL_INVALID_ARG_INDEX: return "Invalid argument index";
case CL_INVALID_ARG_VALUE: return "Invalid argument value";
case CL_INVALID_ARG_SIZE: return "Invalid argument size";
case CL_INVALID_KERNEL_ARGS: return "Invalid kernel arguments";
case CL_INVALID_WORK_DIMENSION: return "Invalid work dimension";
case CL_INVALID_WORK_GROUP_SIZE: return "Invalid work group size";
case CL_INVALID_WORK_ITEM_SIZE: return "Invalid work item size";
case CL_INVALID_GLOBAL_OFFSET: return "Invalid global offset";
case CL_INVALID_EVENT_WAIT_LIST: return "Invalid event wait list";
case CL_INVALID_EVENT: return "Invalid event";
case CL_INVALID_OPERATION: return "Invalid operation";
case CL_INVALID_GL_OBJECT: return "Invalid OpenGL object";
case CL_INVALID_BUFFER_SIZE: return "Invalid buffer size";
case CL_INVALID_MIP_LEVEL: return "Invalid mip-map level";
default: return "Unknown error";
}
}
struct Cladsyn : csnd::Plugin<1, 5> {
cl_mem out;
cl_mem frame;
cl_mem ph;
cl_mem amps;
int bins;
size_t threads;
int count;
int vsamps;
size_t mthreads;
int framecount;
cl_context context;
cl_command_queue commands;
cl_program program;
cl_kernel kernel1, kernel2;
size_t wgs1, wgs2;
csnd::AuxMem<float> mix;
float cs_sr;
int init() {
int asize, ipsize, fpsize, err;
cl_device_id device_ids[32], device_id;
cl_uint num = 0, nump = 0;
cl_platform_id platforms[16];
uint32_t i;
csnd::pv_frame &fsig = inargs.fsig_data(0);
int inum = (int) inargs[3];
int idev = (int) inargs[4];
if(fsig.hop_size() > 1024)
return csound->init_error("hopsize is too large\n");
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, 32, device_ids, &num);
if (err != CL_SUCCESS){
int devs = 0;
clGetPlatformIDs(16, platforms, &nump);
for(i=0; i < nump && devs < 32; i++){
char name[128];
std::stringstream msg;
clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, 128, name, NULL);
msg << "available platform[" << i << "]: " << name << std::endl;
csound->message(msg.str());
err = clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL,
32-devs, &device_ids[devs], &num);
if (err != CL_SUCCESS) {
std::stringstream emsg;
emsg << "failed to find an OpenCL device!" <<
cl_error_string(err) << std::endl;
csound->init_error(emsg.str());
}
}
devs += num;
}
for(i=0; i < num; i++){
char name[128];
cl_device_type type;
clGetDeviceInfo(device_ids[i], CL_DEVICE_NAME, 128, name, NULL);
clGetDeviceInfo(device_ids[i], CL_DEVICE_TYPE, sizeof(cl_device_type),
&type, NULL);
if(type & CL_DEVICE_TYPE_CPU) {
std::stringstream msg;
msg << "available CPU[device " << i << "] " << name << std::endl;
csound->message(msg.str());
}
else if(type & CL_DEVICE_TYPE_GPU) {
std::stringstream msg;
msg << "available GPU[device " << i << "] " << name << std::endl;
csound->message(msg.str());
}
else if(type & CL_DEVICE_TYPE_ACCELERATOR) {
std::stringstream msg;
msg << "available ACCELLERATOR[device " << i << "] " << name
<< std::endl;
csound->message(msg.str());
}
else {
std::stringstream msg;
msg << "available GENERIC[device " << i << "] " << name << std::endl;
csound->message(msg.str());
}
}
// SELECT THE DEVICE HERE
if(idev < num)
device_id = device_ids[idev];
else
device_id = device_ids[num-1];
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context) {
std::stringstream msg;
msg << "Failed to create a compute context! " << cl_error_string(err)
<< std::endl;
return csound->init_error(msg.str());
}
// Create commands
commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands) {
std::stringstream msg;
msg << "Failed to create commands! " << cl_error_string(err)
<< std::endl;
return csound->init_error(msg.str());
}
// Create the compute program from the source buffer
program = clCreateProgramWithSource(context, 1, (const char **) &code,
NULL, &err);
if (!program){
std::stringstream msg;
msg << "Failed to create program! " << cl_error_string(err)
<< std::endl;
return csound->init_error(msg.str());
}
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS)
{
size_t len;
char buffer[2048];
std::stringstream msg;
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG,
sizeof(buffer), buffer, &len);
msg << "Failed to build program executable! " << cl_error_string(err)
<< std::endl << buffer << std::endl;
return csound->init_error(msg.str());
}
kernel1 = clCreateKernel(program, "sample", &err);
if (!kernel1 || err != CL_SUCCESS) {
std::stringstream msg;
msg << "Failed to create sample compute kernel! " << cl_error_string(err)
<< std::endl;
return csound->init_error(msg.str());
}
kernel2 = clCreateKernel(program, "update", &err);
if (!kernel2 || err != CL_SUCCESS) {
std::stringstream msg;
msg << "Failed to create update compute kernel! " << cl_error_string(err)
<< std::endl;
return csound->init_error(msg.str());
}
{
char name[128];
std::stringstream msg;
clGetDeviceInfo(device_id, CL_DEVICE_NAME, 128, name, NULL);
msg << "using device: " << name << std::endl;
csound->message(msg.str());
}
bins = fsig.nbins() - 1;
if(inum > 0 && inum < bins) bins = inum;
vsamps = fsig.hop_size();
threads = bins*vsamps;
mthreads = bins > vsamps ? bins : vsamps;
asize = vsamps*sizeof(cl_float);
ipsize = mthreads*sizeof(cl_long);
fpsize = fsig.dft_size()*sizeof(cl_float);
out = clCreateBuffer(context,0, asize, NULL, NULL);
frame = clCreateBuffer(context, CL_MEM_READ_ONLY, fpsize, NULL, NULL);
ph = clCreateBuffer(context,0, ipsize, NULL, NULL);
amps = clCreateBuffer(context,0, mthreads*sizeof(cl_float), NULL, NULL);
// memset needed?
asize = vsamps*sizeof(float);
mix.allocate(csound, asize);
csound->plugin_deinit(this);
count = 0;
cs_sr = csound->sr();
clGetKernelWorkGroupInfo(kernel1,
device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(wgs1), &wgs1, NULL);
clGetKernelWorkGroupInfo(kernel2,
device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(wgs2), &wgs2, NULL);
clSetKernelArg(kernel1, 0, sizeof(cl_mem), &out);
clSetKernelArg(kernel1, 1, sizeof(cl_mem), &frame);
clSetKernelArg(kernel1, 2, sizeof(cl_mem), &ph);
clSetKernelArg(kernel1, 3, sizeof(cl_mem), &s);
clSetKernelArg(kernel1, 5, sizeof(cl_int), &bins);
clSetKernelArg(kernel1, 6, sizeof(cl_int), &vsamps);
clSetKernelArg(kernel1, 7, sizeof(cl_float), &cs_sr);
clSetKernelArg(kernel2, 0, sizeof(cl_mem), &out);
clSetKernelArg(kernel2, 1, sizeof(cl_mem), &frame);
clSetKernelArg(kernel2, 2, sizeof(cl_mem), &ph);
clSetKernelArg(kernel2, 3, sizeof(cl_mem), &s);
clSetKernelArg(kernel2, 5, sizeof(cl_int), &bins);
clSetKernelArg(kernel2, 6, sizeof(cl_int), &vsamps);
clSetKernelArg(kernel2, 7, sizeof(cl_float), &cs_sr);
return OK;
}
int deinit() {
clReleaseMemObject(out);
clReleaseMemObject(ph);
clReleaseMemObject(frame);
clReleaseMemObject(amps);
clReleaseProgram(program);
clReleaseKernel(kernel1);
clReleaseKernel(kernel2);
clReleaseCommandQueue(commands);
clReleaseContext(context);
return OK;
}
int aperf() {
uint32_t n;
csnd::AudioSig asig(this, outargs(0));
float *fp = inargs.fsig_data(0).data();
for (auto &s : asig) {
if(count == 0) {
int err;
float freq = inargs[2];
clSetKernelArg(kernel1, 4, sizeof(cl_float), &freq);
clSetKernelArg(kernel2, 4, sizeof(cl_float), &freq);
clEnqueueWriteBuffer(commands,frame, CL_TRUE, 0, sizeof(cl_float)*bins*2,
fp, 0, NULL, NULL);
err = clEnqueueNDRangeKernel(commands, kernel1, 1, NULL, &threads, &wgs1,
0, NULL, NULL);
if(err) {
std::stringstream msg;
msg << "Error: Failed to compute sample kernel!" << cl_error_string(err)
<< std::endl;
csound->message(msg.str());
}
clFinish(commands);
clEnqueueReadBuffer(commands, out,
CL_TRUE, 0,vsamps*sizeof(cl_float), mix.data(), 0, NULL, NULL);
err = clEnqueueNDRangeKernel(commands,kernel2, 1, NULL, &mthreads,
&wgs2, 0, NULL, NULL);
if(err) {
std::stringstream msg;
msg << "Error: Failed to compute update kernel!" << cl_error_string(err)
<< std::endl;
csound->message(msg.str());
}
count = vsamps;
}
s = mix[vsamps - count]*inargs[1];
count--;
}
return OK;
}
};
#include <modload.h>
void csnd::on_load(Csound *csound) {
csnd::plugin<Cladsyn>(csound, "cladsyn", "a", "fkkii", csnd::thread::ia);
}
|