1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
/*
** cs_new_dispatch.c
**
** Copyright (C) Martin Brain (mjb@cs.bath.ac.uk) 04/08/12
** Realisation in code for Csound John ffitch Feb 2013
**
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
** Fast system for managing task dependencies and dispatching to threads.
**
** Has a DAG of tasks and has to assign them to worker threads while respecting
** dependency order.
**
** OPT marks code relevant to particular optimisations (listed below the code).
** INV marks invariants
** NOTE marks notes
*/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include "csoundCore.h"
#include "cs_par_base.h"
#include "cs_par_orc_semantics.h"
#include <stdbool.h>
#if defined(_MSC_VER)
/* For InterlockedCompareExchange */
#include <windows.h>
#endif
/* Used as an error value */
//typedef int taskID;
#define INVALID (-1)
#define WAIT (-2)
/* Each task has a status */
//enum state { WAITING = 3, /* Dependencies have not been finished */
// AVAILABLE = 2, /* Dependencies met, ready to be run */
// INPROGRESS = 1, /* Has been started */
// DONE = 0 }; /* Has been completed */
/* Sets of prerequiste tasks for each task */
//typedef struct _watchList {
// taskID id;
// struct _watchList *next;
//} watchList;
/* Array of states of each task -- need to move to CSOUND structure */
//static enum state *task_status = NULL; /* OPT : Structure lay out */
//static watchList **task_watch = NULL;
//static INSDS **task_map = NULL;
/* INV : Read by multiple threads, updated by only one */
/* Thus use atomic read and write */
//static char ** task_dep; /* OPT : Structure lay out */
//static watchList * wlmm;
#define INIT_SIZE (100)
//static int task_max_size;
static void dag_print_state(CSOUND *csound)
{
int i;
watchList *w;
printf("*** %d tasks\n", csound->dag_num_active);
for (i=0; i<csound->dag_num_active; i++) {
printf("%d(%d): ", i, csound->dag_task_map[i]->insno);
switch (csound->dag_task_status[i].s) {
case DONE:
printf("status=DONE (watchList ");
w = csound->dag_task_watch[i];
while (w) { printf("%d ", w->id); w=w->next; }
printf(")\n");
break;
case INPROGRESS:
printf("status=INPROGRESS (watchList ");
w = csound->dag_task_watch[i];
while (w) { printf("%d ", w->id); w=w->next; }
printf(")\n");
break;
case AVAILABLE:
printf("status=AVAILABLE (watchList ");
w = csound->dag_task_watch[i];
while (w) { printf("%d ", w->id); w=w->next; }
printf(")\n");
break;
case WAITING:
{
char *tt = csound->dag_task_dep[i];
int j;
printf("status=WAITING for tasks [");
for (j=0; j<i; j++) if (tt[j]) printf("%d ", j);
printf("]\n");
}
break;
default:
printf("status=???\n"); break;
}
}
}
/* For now allocate a fixed maximum number of tasks; FIXME */
static void create_dag(CSOUND *csound)
{
/* Allocate the main task status and watchlists */
int max = csound->dag_task_max_size;
csound->dag_task_status = csound->Calloc(csound, sizeof(stateWithPadding)*max);
csound->dag_task_watch = csound->Calloc(csound, sizeof(watchList*)*max);
csound->dag_task_map = csound->Calloc(csound, sizeof(INSDS*)*max);
csound->dag_task_dep = (char **)csound->Calloc(csound, sizeof(char*)*max);
csound->dag_wlmm = (watchList *)csound->Calloc(csound, sizeof(watchList)*max);
}
static void recreate_dag(CSOUND *csound)
{
/* Allocate the main task status and watchlists */
int max = csound->dag_task_max_size;
csound->dag_task_status =
csound->ReAlloc(csound, (stateWithPadding *)csound->dag_task_status,
sizeof(stateWithPadding)*max);
csound->dag_task_watch =
csound->ReAlloc(csound, (struct watchList *)csound->dag_task_watch,
sizeof(watchList*)*max);
csound->dag_task_map =
csound->ReAlloc(csound, (INSDS *)csound->dag_task_map, sizeof(INSDS*)*max);
csound->dag_task_dep =
(char **)csound->ReAlloc(csound, csound->dag_task_dep, sizeof(char*)*max);
csound->dag_wlmm =
(watchList *)csound->ReAlloc(csound, csound->dag_wlmm, sizeof(watchList)*max);
}
static INSTR_SEMANTICS *dag_get_info(CSOUND* csound, int insno)
{
INSTR_SEMANTICS *current_instr =
csp_orc_sa_instr_get_by_num(csound, insno);
if (current_instr == NULL) {
current_instr =
csp_orc_sa_instr_get_by_name(csound,
csound->engineState.instrtxtp[insno]->insname);
if (UNLIKELY(current_instr == NULL))
csound->Die(csound,
Str("Failed to find semantic information"
" for instrument '%i'"),
insno);
}
return current_instr;
}
static int dag_intersect(CSOUND *csound, struct set_t *current,
struct set_t *later, int cnt)
{
IGN(cnt);
struct set_t *ans;
int res = 0;
struct set_element_t *ele;
ans = csp_set_intersection(csound, current, later);
res = ans->count;
ele = ans->head;
while (ele != NULL) {
struct set_element_t *next = ele->next;
csound->Free(csound, ele);
ele = next; res++;
}
csound->Free(csound, ans);
return res;
}
void dag_build(CSOUND *csound, INSDS *chain)
{
INSDS *save = chain;
INSDS **task_map;
int i;
//printf("DAG BUILD***************************************\n");
csound->dag_num_active = 0;
while (chain != NULL) {
csound->dag_num_active++;
chain = chain->nxtact;
}
if (csound->dag_num_active>csound->dag_task_max_size) {
//printf("**************need to extend task vector\n");
csound->dag_task_max_size = csound->dag_num_active+INIT_SIZE;
recreate_dag(csound);
}
if (csound->dag_task_status == NULL)
create_dag(csound); /* Should move elsewhere */
else {
memset((void*)csound->dag_task_watch, '\0',
sizeof(watchList*)*csound->dag_task_max_size);
for (i=0; i<csound->dag_task_max_size; i++) {
if (csound->dag_task_dep[i]) {
csound->dag_task_dep[i]= NULL;
}
csound->dag_wlmm[i].id = INVALID;
}
}
task_map = csound->dag_task_map;
for (i=0; i<csound->dag_num_active; i++) {
csound->dag_task_status[i].s = AVAILABLE;
csound->dag_wlmm[i].id=i;
}
csound->dag_changed = 0;
if (UNLIKELY(csound->oparms->odebug))
printf("dag_num_active = %d\n", csound->dag_num_active);
i = 0; chain = save;
while (chain != NULL) { /* for each instance check against later */
int j = i+1; /* count of instance */
if (UNLIKELY(csound->oparms->odebug))
printf("\nWho depends on %d (instr %d)?\n", i, chain->insno);
INSDS *next = chain->nxtact;
INSTR_SEMANTICS *current_instr = dag_get_info(csound, chain->insno);
//csp_set_print(csound, current_instr->read);
//csp_set_print(csound, current_instr->write);
while (next) {
INSTR_SEMANTICS *later_instr = dag_get_info(csound, next->insno);
int cnt = 0;
if (UNLIKELY(csound->oparms->odebug)) printf("%d ", j);
//csp_set_print(csound, later_instr->read);
//csp_set_print(csound, later_instr->write);
//csp_set_print(csound, later_instr->read_write);
if (dag_intersect(csound, current_instr->write,
later_instr->read, cnt++) ||
dag_intersect(csound, current_instr->read_write,
later_instr->read, cnt++) ||
dag_intersect(csound, current_instr->read,
later_instr->write, cnt++) ||
dag_intersect(csound, current_instr->write,
later_instr->write, cnt++) ||
dag_intersect(csound, current_instr->read_write,
later_instr->write, cnt++) ||
dag_intersect(csound, current_instr->read,
later_instr->read_write, cnt++) ||
dag_intersect(csound, current_instr->write,
later_instr->read_write, cnt++)) {
char *tt = csound->dag_task_dep[j];
if (tt==NULL) {
/* get dep vector if missing and set watch first time */
tt = csound->dag_task_dep[j] =
(char*)csound->Calloc(csound, sizeof(char)*(j+1));
csound->dag_task_status[j].s = WAITING;
csound->dag_wlmm[j].next = csound->dag_task_watch[i];
csound->dag_wlmm[j].id = j;
csound->dag_task_watch[i] = &(csound->dag_wlmm[j]);
//printf("set watch %d to %d\n", j, i);
}
tt[i] = 1;
//printf("-yes ");
}
j++; next = next->nxtact;
}
task_map[i] = chain;
i++; chain = chain->nxtact;
}
if (UNLIKELY(csound->oparms->odebug)) dag_print_state(csound);
}
void dag_reinit(CSOUND *csound)
{
int i;
int max = csound->dag_task_max_size;
volatile stateWithPadding *task_status = csound->dag_task_status;
watchList * volatile *task_watch = csound->dag_task_watch;
watchList *wlmm = csound->dag_wlmm;
if (UNLIKELY(csound->oparms->odebug))
printf("DAG REINIT************************\n");
for (i=csound->dag_num_active; i<max; i++)
task_status[i].s = DONE;
task_status[0].s = AVAILABLE;
task_watch[0] = NULL;
for (i=1; i<csound->dag_num_active; i++) {
int j;
task_status[i].s = AVAILABLE;
task_watch[i] = NULL;
if (csound->dag_task_dep[i]==NULL) continue;
for (j=0; j<i; j++)
if (csound->dag_task_dep[i][j]) {
task_status[i].s = WAITING;
wlmm[i].id = i;
wlmm[i].next = task_watch[j];
task_watch[j] = &wlmm[i];
break;
}
}
//dag_print_state(csound);
}
//#define ATOMIC_READ(x) __atomic_load(&(x), __ATOMIC_SEQ_CST)
//#define ATOMIC_WRITE(x,v) __atomic_(&(x), v, __ATOMIC_SEQ_CST)
#define ATOMIC_READ(x) x
#define ATOMIC_WRITE(x,v) x = v;
#if defined(_MSC_VER)
#define ATOMIC_CAS(x,current,new) \
(current == InterlockedCompareExchange(x, new, current))
#else
#define ATOMIC_CAS(x,current,new) \
__atomic_compare_exchange_n(x,&(current),new, true, __ATOMIC_SEQ_CST, \
__ATOMIC_SEQ_CST)
#endif
#if defined(_MSC_VER)
#define ATOMIC_CAS_PTR(x,current,new) \
(current == InterlockedCompareExchangePointer(x, new, current))
#else
#define ATOMIC_CAS_PTR(x,current,new) \
__atomic_compare_exchange_n(x,&(current),new, true, __ATOMIC_SEQ_CST,\
__ATOMIC_SEQ_CST)
#endif
taskID dag_get_task(CSOUND *csound, int index, int numThreads, taskID next_task)
{
int i;
int count_waiting = 0;
int active = csound->dag_num_active;
int start = (index * active) / numThreads;
volatile stateWithPadding *task_status = csound->dag_task_status;
enum state current_task_status;
if (next_task != INVALID) {
// Have forwarded one task from the previous one
// assert(ATOMIC_READ(task_status[next_task].s) == WAITING);
ATOMIC_WRITE(task_status[next_task].s,INPROGRESS);
return next_task;
}
//printf("**GetTask from %d\n", csound->dag_num_active);
i = start;
do {
current_task_status = ATOMIC_READ(task_status[i].s);
switch (current_task_status) {
case AVAILABLE :
// Need to CAS as the value may have changed
if (ATOMIC_CAS(&(task_status[i].s), current_task_status, INPROGRESS)) {
return (taskID)i;
}
break;
case WAITING :
// printf("**%d waiting\n", i);
++count_waiting;
break;
case INPROGRESS :
// print(f"**%d active\n", i);
break;
case DONE :
//printf("**%d done\n", i);
break;
default :
// Enum corrupted!
//assert(0);
break;
}
// Increment modulo active
i = (i+1 == active) ? 0 : i + 1;
} while (i != start);
//dag_print_state(csound);
if (count_waiting == 0) return (taskID)INVALID;
//printf("taskstodo=%d)\n", morework);
return (taskID)WAIT;
}
/* This static is OK as not written */
static const watchList DoNotRead = { INVALID, NULL};
inline static int moveWatch(CSOUND *csound, watchList * volatile *w,
watchList *t)
{
IGN(csound);
watchList *local=*w;
t->next = NULL;
//printf("moveWatch\n");
do {
//dag_print_state(csound);
local = ATOMIC_READ(*w);
if (local==&DoNotRead) {
//printf("local is DoNotRead\n");
return 0;//was no & earlier
}
else t->next = local;
} while (!ATOMIC_CAS_PTR(w,local,t));
//dag_print_state(csound);
//printf("moveWatch done\n");
return 1;
}
taskID dag_end_task(CSOUND *csound, taskID i)
{
watchList *to_notify, *next;
int canQueue;
int j, k;
watchList * volatile *task_watch = csound->dag_task_watch;
enum state current_task_status;
int wait_on_current_tasks;
taskID next_task = INVALID;
ATOMIC_WRITE(csound->dag_task_status[i].s, DONE); /* as DONE is zero */
// A write barrier /might/ be useful here to avoid the case
// of the list being DoNotRead but the status being something
// other than done. At the time of writing this wouldn't give
// a correctness issue, plus the semantics of GCC's CAS apparently
// imply a write barrier, so it should be OK.
{ /* ATOMIC_SWAP */
do {
to_notify = ATOMIC_READ(task_watch[i]);
} while (!ATOMIC_CAS_PTR(&task_watch[i],to_notify,(watchList *) &DoNotRead));
} //to_notify = ATOMIC_SWAP(task_watch[i], &DoNotRead);
//printf("Ending task %d\n", i);
next = to_notify;
while (to_notify) { /* walk the list of watchers */
next = to_notify->next;
j = to_notify->id;
//printf("%d notifying task %d it finished\n", i, j);
canQueue = 1;
wait_on_current_tasks = 0;
for (k=0; k<j; k++) { /* seek next watch */
if (csound->dag_task_dep[j][k]==0) continue;
current_task_status = ATOMIC_READ(csound->dag_task_status[k].s);
//printf("investigating task %d (%d)\n", k, current_task_status);
if (current_task_status == WAITING) { // Prefer watching blocked tasks
//printf("found task %d to watch %d status %d\n",
// k, j, csound->dag_task_status[k].s);
if (moveWatch(csound, &task_watch[k], to_notify)) {
//printf("task %d now watches %d\n", j, k);
canQueue = 0;
wait_on_current_tasks = 0;
break;
}
else {
/* assert csound->dag_task_status[j].s == DONE and we are in race */
//printf("Racing status %d %d %d %d\n",
// csound->dag_task_status[j].s, i, j, k);
}
}
else if (current_task_status == AVAILABLE ||
current_task_status == INPROGRESS) {
wait_on_current_tasks = 1;
}
//else { printf("not %d\n", k); }
}
// Try the same thing again but this time waiting on active or available task
if (wait_on_current_tasks == 1) {
for (k=0; k<j; k++) { /* seek next watch */
if (csound->dag_task_dep[j][k]==0) continue;
current_task_status = ATOMIC_READ(csound->dag_task_status[k].s);
//printf("investigating task %d (%d)\n", k, current_task_status);
if (current_task_status != DONE) { // Prefer watching blocked tasks
//printf("found task %d to watch %d status %d\n",
// k, j, csound->dag_task_status[k].s);
if (moveWatch(csound, &task_watch[k], to_notify)) {
//printf("task %d now watches %d\n", j, k);
canQueue = 0;
break;
}
else {
/* assert csound->dag_task_status[j].s == DONE and we are in race */
//printf("Racing status %d %d %d %d\n",
// csound->dag_task_status[j].s, i, j, k);
}
}
//else { printf("not %d\n", k); }
}
}
if (canQueue) { /* could use monitor here */
if (next_task == INVALID) {
next_task = j; // Forward directly to the thread to save re-dispatch
} else {
ATOMIC_WRITE(csound->dag_task_status[j].s, AVAILABLE);
}
}
to_notify = next;
}
//dag_print_state(csound);
return next_task;
}
/* INV : Acyclic */
/* INV : Each entry is read by a single thread,
* no writes (but see OPT : Watch ordering) */
/* Thus no protection needed */
/* INV : Watches for different tasks are disjoint */
/* INV : Multiple threads can add to a watch list but only one will remove
* These are the only interactions */
/* Thus the use of CAS / atomic operations */
/* Used to mark lists that should not be added to, see NOTE : Race condition */
#if 0
watchList nullList;
watchList *doNotAdd = &nullList;
watchList endwatch = { NULL, NULL };
/* Lists of tasks that depend on the given task */
watchList ** watch; /* OPT : Structure lay out */
watchListMemoryManagement *wlmm; /* OPT : Structure lay out */
/* INV : wlmm[X].s.id == X; */ /* OPT : Data structure redundancy */
/* INV : status[X] == WAITING => wlmm[X].used */
/* INV : wlmm[X].s is in watch[Y] => wlmm[X].used */
/* Watch list helper functions */
void initialiseWatch (watchList **w, taskID id) {
wlmm[id].used = TRUE;
wlmm[id].s.id = id;
wlmm[id].s.tail = *w;
*w = &(wlmm[id].s);
}
inline watchList * getWatches(taskID id) {
return __atomic_test_and_set (&(watch[id]), doNotAdd);
}
int moveWatch (watchList **w, watchList *t) {
watchList *local;
t->tail = NULL;
do {
local = atomicRead(*w);
if (local == doNotAdd) {
return 0;
} else {
t->tail = local;
}
} while (!atomicCAS(*w,local,t)); /* OPT : Delay loop */
return 1;
}
void appendToWL (taskID id, watchList *l) {
watchList *w;
do {
w = watch[id];
l->tail = w;
w = __atomic_compare_exchange_n(&(watch[id]),w,l, false, \
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);
} while (!(w == l));
}
inline void deleteWatch (watchList *t) {
wlmm[t->id].used = FALSE;
}
typedef struct monitor {
pthread_mutex_t l = PTHREAD_MUTEX_INITIALIZER;
unsigned int threadsWaiting = 0; /* Shadows the length of
workAvailable wait queue */
queue<taskID> q; /* OPT : Dispatch order */
pthread_cond_t workAvailable = PTHREAD_COND_INITIALIZER;
pthread_cond_t done = PTHREAD_COND_INITIALIZER;
} monitor; /* OPT : Lock-free */
/* INV : q.size() + dispatched <= ID */
/* INV : foreach(id,q.contents()) { status[id] = AVAILABLE; } */
/* INV : threadsWaiting <= THREADS */
monitor dispatch;
void addWork(monitor *dispatch, taskID id) {
pthread_mutex_lock(&dispatch->l);
status[id] = AVAILABLE;
dispatch->q.push(id);
if (threadsWaiting >= 1) {
pthread_cond_signal(&dispatch->c);
}
pthread_mutex_unlock(&dispatch->l);
return;
}
taskID getWork(monitor *dispatch) {
taskID returnValue;
pthread_mutex_lock(&dispatch->l);
while (q.empty()) {
++dispatch->threadsWaiting;
if (dispatch->threadsWaiting == THREADS) {
/* Will the last person out please turn off the lights! */
pthread_cond_signal(&dispatch->done);
}
pthread_cond_wait(&dispatch->l,&dispatch->workAvailable);
--dispatch->threadsWaiting;
/* NOTE : A while loop is needed as waking from this requires
* reacquiring the mutex and in the mean time someone
* might have got it first and removed the work. */
}
returnValue = q.pop();
pthread_mutex_unlock(&dispatch->l);
return returnValue;
}
void waitForWorkToBeCompleted (monitor *dispatch) {
/* Requires
* INV : threadsWaiting == THREADS <=> \forall id \in ID . status[id] == DONE
*/
pthread_mutex_lock(&dispatch->l);
if (dispatch->threadsWaiting < THREADS) {
pthread_cond_wait(&dispatch->l,&dispatch->done);
}
/* This assertion is more difficult to prove than it might first appear */
assert(dispatch->threadsWaiting == THREADS);
pthread_mutex_unlock(&dispatch->l);
return;
}
void mainThread (State *s) {
/* Set up the DAG */
if (s->firstRun || s->updateNeeded) {
dep = buildDAG(s); /* OPT : Dispatch order */
/* Other : Update anything that is indexed by task
* (i.e. all arrays given length ID) */
}
/* Reset the data structure */
foreach (id in ID) {
watch[id] = NULL;
}
/* Initialise the dispatch queue */
foreach (id in ID) { /* OPT : Dispatch order */
if (dep[id] == EMPTYSET) {
atomicWrite(status[id] = AVAILABLE);
addWork(*dispatch,id);
} else {
atomicWrite(status[id] = WAITING);
initialiseWatch(&watch[choose(dep[id])], id); /* OPT : Watch ordering */
}
}
/* INV : Data structure access invariants start here */
/* INV : Status only decrease from now */
/* INV : Watch list for id contains a subset of the things that depend on id */
/* INV : Each id appears in at most one watch list */
/* INV : doNotAdd only appears at the head of a watch list */
/* INV : if (watch[id] == doNotAdd) then { status[id] == DONE; } */
waitForWorkToBeCompleted(*dispatch);
return;
}
void workerThread (State *s) {
taskID work;
watchList *tasksToNotify, next;
bool canQueue;
do {
task = getWork(dispatch);
/* Do stuff */
atomicWrite(status[work] = INPROGRESS);
doStuff(work);
atomicWrite(status[work] = DONE); /* NOTE : Race condition */
tasksToNotify = getWatches(work);
while (tasksToNotify != NULL) {
next = tasksToNotify->tail;
canQueue = TRUE;
foreach (dep in dep[tasksToNotify->id]) { /* OPT : Watch ordering */
if (atomicRead(status[dep]) != DONE) {
/* NOTE : Race condition */
if (moveWatch(watch[dep],tasksToNotify)) {
canQueue = FALSE;
break;
} else {
/* Have hit the race condition, try the next option */
assert(atomicRead(status[dep]) == DONE);
}
}
}
if (canQueue) { /* OPT : Save one work item */
addWork(*dispatch,tasksToNotify->id);
deleteWatch(tasksToNotify);
}
tasksToNotify = next;
}
} while (1); /* NOTE : some kind of control for thread exit needed */
return;
}
/* OPT : Structure lay out
*
* All data structures that are 1. modified by one or more thread and
* 2. accessed by multiple threads, should be aligned to cache lines and
* padded so that there is only one instance per cache line. This will reduce
* false memory contention between objects that just happen to share a cache
* line. Blocking to 64 bytes will probably be sufficient and if people really
* care about performance that much they can tune to their particular
* architecture.
*/
/* OPT : Watch ordering
*
* Moving a watch is relatively cheap (in the uncontended case) but
* it would be best to avoid moving watches where possible. The ideal
* situation would be for every task to watch the last pre-requisite.
* There are two places in the code that affect the watch ordering;
* the initial assignment and the movement when a watch is triggered.
* Prefering WAITING tasks (in the later) and lower priority tasks
* (if combined with the dispatch order optimisation below) are probably
* good choices. One mechanism would be to reorder the set (or array) of
* dependencies to store this information. When looking for a (new) watch,
* tasks are sorted with increasing status first and then the first one picked.
* Keeping the list sorted (or at least split between WAITING and others) with
* each update should (if the dispatch order is fixed / slowly adapting) result
* in the best things to watch moving to the front and thus adaptively give
* the best possible tasks to watch. The interaction with a disaptch order
* heuristic would need to be considered. Note that only one thread will
* look at any given element of dep[] so they can be re-ordered without
* needing locking.
*/
/* OPT : Structure lay out
*
* Some of the fields are not strictly needed and are just there to make
* the algorithm cleaner and more intelligible. The id fields of the watch
* lists are not really needed as there is one per task and their position
* within the watchListMemoryManager array allows the task to be infered.
* Likewise the used flag in the memory manager is primarily for book-keeping
* and checking / assertions and could be omitted.
*/
/* OPT : Delay loop
*
* In theory it is probably polite to put a slowly increasing delay in
* after a failed compare and swap to reduce pressure on the memory
* subsystem in the highly contended case. As multiple threads adding
* to a task's watch list simultaneously is probably a rare event, the
* delay loop is probably unnecessary.
*/
/* OPT : Dispatch order
*
* The order in which tasks are dispatched affects the amount of
* parallelisation possible. Picking the exact scheduling order, even
* if the duration of the tasks is known is probably NP-Hard (see
* bin-packing*) so heuristics are probably the way to go. The proporition
* of tasks which depend on a given task is probably a reasonable primary
* score, with tie-breaks going to longer tasks. This can either be
* applied to just the initial tasks (either in ordering the nodes in the DAG)
* or in the order in which they are traversed. Alternatively by
* sorting the queue / using a heap / other priority queuing structure
* it might be possible to do this dynamically. The best solution would
* probably be adaptive with a task having its priority incremented
* each time another worker thread blocks on a shortage of work, with these
* increments also propagated 'upwards' in the DAG.
*
* *. Which means that a solver could be used to give the best possible
* schedule / the maximum parallelisation. This could be useful for
* optimisation.
*/
/* OPT : Lock-free
*
* A lock free dispatch mechanism is probably possible as threads can
* scan the status array for things listed as AVAILABLE and then atomicCAS
* to INPROGRESS to claim them. But this starts to involve busy-waits or
* direct access to futexes and is probably not worth it.
*/
/* OPT : Save one work item
*
* Rather than adding all watching tasks who have their dependencies met to
* the dispatch queue, saving one (perhaps the best, see OPT : Dispatch order)
* means the thread does not have to wait. In the case of a purely linear DAG
* this should be roughly as fast as the single threaded version.
*/
/* NOTE : Race condition
*
* There is a subtle race condition:
*
* Thread 1 Thread 2
* -------- --------
* atomicRead(status[dep]) != DONE
* atomicWrite(status[work] = DONE);
* tasksToNotify = getWatches(work);
* moveWatch(watch[dep],tasksToNotify);
*
* The key cause is that the status and the watch list cannot be updated
* simultaneously. However as getWatches removes all watches and moves or
* removes them, it is sufficient to have a doNotAdd watchList node to detect
* this race condition and resolve it by having moveWatch() fail.
*/
void newdag_alloc(CSOUND *csound, int numtasks)
{
doNotAdd = &endwatch;
??
watch = (watchList **)csound->Calloc(csound, sizeof(watchList *)*numtasks);
wlmm = (watchListMemoryManagement *)
csound->Calloc(csound, sizeof(watchListMemoryManagement)*numtasks);
}
#endif
|