1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
|
/*
pvsanal.c:
Copyright (C) 2002 Richard Dobson
(C) 2007 John ffitch/Richard Dobson (SDFT)
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
/* pvsanal.c */
/* functions based on CARL pvoc.c (c) Mark Dolson.
The CARL software distribution is due to be released under the GNU LPGL.
*/
#include <math.h>
#include "csoundCore.h"
#include "pstream.h"
double besseli(double x);
static void hamming(MYFLT *win, int32_t winLen, int32_t even);
static void vonhann(MYFLT *win, int32_t winLen, int32_t even);
static void generate_frame(CSOUND *, PVSANAL *p);
static void process_frame(CSOUND *, PVSYNTH *p);
/* generate half-window */
static CS_NOINLINE int32_t PVS_CreateWindow(CSOUND *csound, MYFLT *buf,
int32_t type, int32_t winLen)
{
double fpos, inc;
MYFLT *ftable;
int32_t i, n, flen, even;
even = (winLen + 1) & 1;
switch (type) {
case 0: /* Hamming */
hamming(buf, (winLen >> 1), even);
return OK;
case 1: /* Hanning */
vonhann(buf, (winLen >> 1), even);
return OK;
case 2: /* Kaiser */
{
double beta = 6.8;
double x, flen2, besbeta;
flen2 = 1.0 / ((double)(winLen >> 1) * (double)(winLen >> 1));
besbeta = 1.0 / besseli(beta);
n = winLen >> 1;
x = (even ? 0.5 : 0.05);
for (i = 0; i < n; i++, x += 1.0)
buf[i] = (MYFLT)(besseli(beta * sqrt(1.0 - x * x * flen2))
* besbeta);
buf[i] = FL(0.0);
}
return OK;
default:
if (UNLIKELY(type >= 0))
return csound->InitError(csound, Str("invalid window type"));
}
/* use table created with GEN20 */
flen = csoundGetTable(csound, &ftable, -(type));
if (UNLIKELY(flen < 0))
return csound->InitError(csound, Str("ftable for window not found"));
inc = (double)flen / (double)(winLen & (~1));
fpos = ((double)flen + (double)even * inc) * 0.5;
n = winLen >> 1;
/* this assumes that for a window with even size, space for an extra */
/* sample is allocated */
for (i = 0; i < n; i++) {
double frac, tmp;
int32_t pos;
frac = modf(fpos, &tmp);
pos = (int32_t) tmp;
buf[i] = ftable[pos] + ((ftable[pos + 1] - ftable[pos]) * (MYFLT) frac);
fpos += inc;
}
buf[n] = (even ? FL(0.0) : ftable[flen]);
return OK;
}
int32_t pvssanalset(CSOUND *csound, PVSANAL *p)
{
/* opcode params */
int32_t N = MYFLT2LRND(*p->winsize);
int32_t NB;
int32_t i;
int32_t wintype = MYFLT2LRND(*p->wintype);
if (N<=0) return csound->InitError(csound, Str("Invalid window size"));
/* deal with iinit and iformat later on! */
N = N + N%2; /* Make N even */
NB = N/2+1; /* Number of bins */
/* Need space for NB complex numbers for each of ksmps */
if (p->fsig->frame.auxp==NULL ||
CS_KSMPS*(N+2)*sizeof(MYFLT) > (uint32_t)p->fsig->frame.size)
csound->AuxAlloc(csound, CS_KSMPS*(N+2)*sizeof(MYFLT),&p->fsig->frame);
else memset(p->fsig->frame.auxp, 0, CS_KSMPS*(N+2)*sizeof(MYFLT));
/* Space for remembering samples */
if (p->input.auxp==NULL ||
N*sizeof(MYFLT) > (uint32_t)p->input.size)
csound->AuxAlloc(csound, N*sizeof(MYFLT),&p->input);
else memset(p->input.auxp, 0, N*sizeof(MYFLT));
csound->AuxAlloc(csound, NB * sizeof(double), &p->oldInPhase);
if (p->analwinbuf.auxp==NULL ||
NB*sizeof(CMPLX) > (uint32_t)p->analwinbuf.size)
csound->AuxAlloc(csound, NB*sizeof(CMPLX),&p->analwinbuf);
else memset(p->analwinbuf.auxp, 0, NB*sizeof(CMPLX));
p->inptr = 0; /* Pointer in circular buffer */
p->fsig->NB = p->Ii = NB;
p->fsig->wintype = wintype;
p->fsig->format = PVS_AMP_FREQ; /* only this, for now */
p->fsig->N = p->nI = N;
p->fsig->sliding = 1;
/* Need space for NB sines, cosines and a scatch phase area */
if (p->trig.auxp==NULL ||
(2*NB)*sizeof(double) > (uint32_t)p->trig.size)
csound->AuxAlloc(csound,(2*NB)*sizeof(double),&p->trig);
{
double dc = cos(TWOPI/(double)N);
double ds = sin(TWOPI/(double)N);
double *c = (double *)(p->trig.auxp);
double *s = c+NB;
p->cosine = c;
p->sine = s;
c[0] = 1.0; s[0] = 0.0; // assignment to s unnecessary as auxalloc zeros
/*
direct computation of c and s may be better for large n
c[i] = cos(2*PI*i/n);
s[i] = sin(2*PI*i/n);
if (i % 16 == 15) {
c[i] = cos(2*PI*(i+1)/n);
s[i] = sin(2*PI*(i+1)/n);
*/
for (i=1; i<NB; i++) {
c[i] = dc*c[i-1] - ds*s[i-1];
s[i] = ds*c[i-1] + dc*s[i-1];
}
/* for (i=0; i<NB; i++) */
/* printf("c[%d] = %f \ts[%d] = %f\n", i, c[i], i, s[i]); */
}
return OK;
}
int32_t pvsanalset(CSOUND *csound, PVSANAL *p)
{
MYFLT *analwinhalf,*analwinbase;
MYFLT sum;
int32_t halfwinsize,buflen;
int32_t i,nBins,Mf/*,Lf*/;
/* opcode params */
uint32_t N =(int32_t) *(p->fftsize);
uint32_t overlap = (uint32_t) *(p->overlap);
uint32_t M = (uint32_t) *(p->winsize);
int32_t wintype = (int32_t) *p->wintype;
/* deal with iinit and iformat later on! */
if (overlap<CS_KSMPS || overlap<=10) /* 10 is a guess.... */
return pvssanalset(csound, p);
if (UNLIKELY(N <= 32))
return csound->InitError(csound,
Str("pvsanal: fftsize of 32 is too small!\n"));
/* check N for powof2? CARL fft routines and FFTW are not limited to that */
N = N + N%2; /* Make N even */
if (UNLIKELY(M < N)) {
csound->Warning(csound,
Str("pvsanal: window size too small for fftsize"));
M = N;
}
if (UNLIKELY(overlap > N / 2))
return csound->InitError(csound,
Str("pvsanal: overlap too big for fft size\n"));
#ifdef OLPC
if (UNLIKELY(overlap < CS_KSMPS))
return csound->InitError(csound,
Str("pvsanal: overlap must be >= ksmps\n"));
#endif
halfwinsize = M/2;
buflen = M*4;
p->arate = (float)(csound->esr / (MYFLT) overlap);
p->fund = (float)(csound->esr / (MYFLT) N);
nBins = N/2 + 1;
/* we can exclude/simplify all sorts of stuff in CARL
* as we will never do time-scaling with this opcode
*/
/*Lf =*/ Mf = 1 - M%2;
csound->AuxAlloc(csound, overlap * sizeof(MYFLT), &p->overlapbuf);
csound->AuxAlloc(csound, (N+2) * sizeof(MYFLT), &p->analbuf);
csound->AuxAlloc(csound, (M+Mf) * sizeof(MYFLT), &p->analwinbuf);
csound->AuxAlloc(csound, nBins * sizeof(MYFLT), &p->oldInPhase);
csound->AuxAlloc(csound, buflen * sizeof(MYFLT), &p->input);
/* the signal itself */
csound->AuxAlloc(csound, (N+2) * sizeof(MYFLT), &p->fsig->frame);
/* make the analysis window*/
analwinbase = (MYFLT *) (p->analwinbuf.auxp);
analwinhalf = analwinbase + halfwinsize;
if (UNLIKELY(PVS_CreateWindow(csound, analwinhalf, wintype, M) != OK))
return NOTOK;
for (i = 1; i <= halfwinsize; i++)
*(analwinhalf - i) = *(analwinhalf + i - Mf);
if (M > N) {
double dN = (double)N;
/* sinc function */
if (Mf)
*analwinhalf *= (MYFLT)(dN * sin(HALFPI/dN) / (HALFPI));
for (i = 1; i <= halfwinsize; i++)
*(analwinhalf + i) *= (MYFLT)
(dN * sin((double)(PI*(i+0.5*Mf)/dN)) / (PI*(i+0.5*Mf)));
for (i = 1; i <= halfwinsize; i++)
*(analwinhalf - i) = *(analwinhalf + i - Mf);
}
/* get net amp */
sum = FL(0.0);
for (i = -halfwinsize; i <= halfwinsize; i++)
sum += *(analwinhalf + i);
sum = FL(2.0) / sum; /* factor of 2 comes in later in trig identity */
for (i = -halfwinsize; i <= halfwinsize; i++)
*(analwinhalf + i) *= sum;
/* p->invR = (float)(FL(1.0) / csound->esr); */
p->RoverTwoPi = (float)(p->arate / TWOPI_F);
p->TwoPioverR = (float)(TWOPI_F / p->arate);
p->Fexact = (float)(csound->esr / (MYFLT)N);
p->nI = -((int64_t)(halfwinsize/overlap))*overlap; /* input time (in samples) */
/*Dd = halfwinsize + p->nI + 1; */
/* in streaming mode, Dd = ovelap all the time */
p->Ii = 0;
p->IOi = 0;
p->buflen = buflen;
p->nextIn = (MYFLT *) p->input.auxp;
p->inptr = 0;
/* and finally, set up the output signal */
p->fsig->N = N;
p->fsig->overlap = overlap;
p->fsig->winsize = M;
p->fsig->wintype = wintype;
p->fsig->framecount = 1;
p->fsig->format = PVS_AMP_FREQ; /* only this, for now */
p->fsig->sliding = 0;
if (!(N & (N - 1))) /* if pow of two use this */
p->setup = csound->RealFFT2Setup(csound,N,FFT_FWD);
return OK;
}
static void generate_frame(CSOUND *csound, PVSANAL *p)
{
int32_t got, tocp,i,j,k,ii;
int32_t N = p->fsig->N;
int32_t N2 = N/2;
int32_t buflen = p->buflen;
int32_t analWinLen = p->fsig->winsize/2;
int32_t synWinLen = analWinLen;
float *ofp; /* RWD MUST be 32bit */
MYFLT *fp;
MYFLT *anal = (MYFLT *) (p->analbuf.auxp);
MYFLT *input = (MYFLT *) (p->input.auxp);
MYFLT *analWindow = (MYFLT *) (p->analwinbuf.auxp) + analWinLen;
MYFLT *oldInPhase = (MYFLT *) (p->oldInPhase.auxp);
MYFLT angleDif,real,imag,phase;
double rratio;
got = p->fsig->overlap; /*always assume */
fp = (MYFLT *) (p->overlapbuf.auxp);
tocp = (got<= input + buflen - p->nextIn ? got : input + buflen - p->nextIn);
got -= tocp;
while (tocp-- > 0)
*(p->nextIn++) = *fp++;
if (got > 0) {
p->nextIn -= buflen;
while (got-- > 0)
*p->nextIn++ = *fp++;
}
if (p->nextIn >= (input + buflen))
p->nextIn -= buflen;
/* analysis: The analysis subroutine computes the complex output at
time n of (N/2 + 1) of the phase vocoder channels. It operates
on input samples (n - analWinLen) thru (n + analWinLen) and
expects to find these in input[(n +- analWinLen) mod ibuflen].
It expects analWindow to point to the center of a
symmetric window of length (2 * analWinLen +1). It is the
responsibility of the main program to ensure that these values
are correct! The results are returned in anal as succesive
pairs of real and imaginary values for the lowest (N/2 + 1)
channels. The subroutines fft and reals together implement
one efficient FFT call for a real input sequence. */
/* for (i = 0; i < N+2; i++)
*(anal + i) = FL(0.0); */ /*initialize*/
memset(anal, 0, sizeof(MYFLT)*(N+2));
j = (p->nI - analWinLen - 1 + buflen) % buflen; /*input pntr*/
k = p->nI - analWinLen - 1; /*time shift*/
while (k < 0)
k += N;
k = k % N;
for (i = -analWinLen; i <= analWinLen; i++) {
if (UNLIKELY(++j >= buflen))
j -= buflen;
if (UNLIKELY(++k >= N))
k -= N;
/* *(anal + k) += *(analWindow + i) * *(input + j); */
anal[k] += analWindow[i] * input[j];
}
if (!(N & (N - 1))) {
/* csound->RealFFT(csound, anal, N);*/
csound->RealFFT2(csound,p->setup,anal);
anal[N] = anal[1];
anal[1] = anal[N + 1] = FL(0.0);
}
else
csound->RealFFTnp2(csound, anal, N);
/* conversion: The real and imaginary values in anal are converted to
magnitude and angle-difference-per-second (assuming an
intermediate sampling rate of rIn) and are returned in
anal. */
#ifdef NOTDEF
/* may support this later on */
if (format == PVS_AMP_PHASE) {
/* PVOCEX uses plain (wrapped) phase format, ref Soundhack */
for (i=0,i0=anal,i1=anal+1,oi=p->oldInPhase;
i <= N2;
i++,i0+=2,i1+=2, oi++) {
real = *i0;
imag = *i1;
*i0 = HYPOT(real, imag);
/* phase unwrapping */
/*if (*i0 == 0.)*/
if (UNLIKELY(*i0 < FL(1.0E-10)))
/* angleDif = 0.0f; */
phase = FL(0.0);
else {
phase = ATAN2(imag,real);
/*angleDif = (phase = (float)rratio) - *oi;
*oi = phase;
phase = (MYFLT)rratio;
*/
}
*i1 = phase;
}
}
#endif
/*if (format==PVS_AMP_FREQ) {*/
for (i=ii=0 /*,i0=anal,i1=anal+1,oi=oldInPhase*/;
i <= N2;
i++,ii+=2 /*i0+=2,i1+=2, oi++*/) {
real = anal[ii] /* *i0 */;
imag = anal[ii+1] /* *i1 */;
/**i0*/ anal[ii] = HYPOT(real, imag);
/* phase unwrapping */
/*if (*i0 == 0.)*/
if (UNLIKELY(/* *i0 */ anal[ii] < FL(1.0E-10)))
angleDif = FL(0.0);
else {
rratio = atan2((double)imag,(double)real);
angleDif = (phase = (MYFLT)rratio) - /**oi*/ oldInPhase[i];
/* *oi */ oldInPhase[i] = phase;
}
if (angleDif > PI_F)
angleDif = angleDif - TWOPI_F;
if (angleDif < -PI_F)
angleDif = angleDif + TWOPI_F;
/* add in filter center freq.*/
/* *i1 */ anal[ii+1] = angleDif * p->RoverTwoPi + ((MYFLT) i * p->Fexact);
}
/* } */
/* else must be PVOC_COMPLEX */
fp = anal;
ofp = (float *) (p->fsig->frame.auxp); /* RWD MUST be 32bit */
for (i=0;i < N+2;i++)
/* *ofp++ = (float)(*fp++); */
ofp[i] = (float) fp[i];
p->nI += p->fsig->overlap; /* increment time */
if (p->nI > (synWinLen + p->fsig->overlap))
p->Ii = /*I*/p->fsig->overlap;
else
if (p->nI > synWinLen)
p->Ii = p->nI - synWinLen;
else {
p->Ii = 0;
/* for (i=p->nO+synWinLen; i<buflen; i++)
if (i > 0)
*(output+i) = 0.0f;
*/
}
p->IOi = p->Ii;
}
static void anal_tick(CSOUND *csound, PVSANAL *p,MYFLT samp)
{
MYFLT *inbuf = (MYFLT *) (p->overlapbuf.auxp);
if (p->inptr== p->fsig->overlap) {
generate_frame(csound, p);
p->fsig->framecount++;
p->inptr = 0;
}
//printf("inptr = %d fsig->overlap=%d\n", p->inptr, p->fsig->overlap);
inbuf[p->inptr++] = samp;
}
static inline double mod2Pi(double x)
{
x = fmod(x,TWOPI);
if (x <= -PI) {
return x + TWOPI;
}
else if (x > PI) {
return x - TWOPI;
}
else
return x;
}
int32_t pvssanal(CSOUND *csound, PVSANAL *p)
{
MYFLT *ain;
int32_t NB = p->Ii, loc;
int32_t N = p->fsig->N;
MYFLT *data = (MYFLT*)(p->input.auxp);
CMPLX *fw = (CMPLX*)(p->analwinbuf.auxp);
double *c = p->cosine;
double *s = p->sine;
double *h = (double*)p->oldInPhase.auxp;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t i, nsmps = CS_KSMPS;
int32_t wintype = p->fsig->wintype;
if (UNLIKELY(data==NULL)) {
return csound->PerfError(csound,&(p->h),
Str("pvsanal: Not Initialised.\n"));
}
ain = p->ain; /* The input samples */
loc = p->inptr; /* Circular buffer */
nsmps -= early;
for (i=offset; i < nsmps; i++) {
MYFLT re, im, dx;
CMPLX* ff;
int32_t j;
/* printf("%d: in = %f\n", i, *ain); */
dx = *ain - data[loc]; /* Change in sample */
data[loc] = *ain++; /* Remember input sample */
/* get the frame for this sample */
ff = (CMPLX*)(p->fsig->frame.auxp) + i*NB;
/* fw is the current frame at this sample */
for (j = 0; j < NB; j++) {
double ci = c[j], si = s[j];
re = fw[j].re + dx;
im = fw[j].im;
fw[j].re = ci*re - si*im;
fw[j].im = ci*im + si*re;
}
loc++; if (UNLIKELY(loc==p->nI)) loc = 0; /* Circular buffer */
/* apply window and transfer to ff buffer*/
/* Rectang :Fw_t = F_t */
/* Hamming :Fw_t = 0.54F_t - 0.23[ F_{t-1}+F_{t+1}] */
/* Hamming :Fw_t = 0.5 F_t - 0.25[ F_{t-1}+F_{t+1}] */
/* Blackman:Fw_t = 0.42F_t - 0.25[ F_{t-1}+F_{t+1}]+0.04[F_{t-2}+F_{t+2}] */
/* Blackman_exact:Fw_t = 0.42659071367153912296F_t
- 0.24828030954428202923 [F_{t-1}+F_{t+1}]
+ 0.038424333619948409286 [F_{t-2}+F_{t+2}] */
/* Nuttall_C3:Fw_t = 0.375 F_t - 0.25[ F_{t-1}+F_{t+1}] +
0.0625 [F_{t-2}+F_{t+2}] */
/* BHarris_3:Fw_t = 0.44959 F_t - 0.24682[ F_{t-1}+F_{t+1}] +
0.02838 [F_{t-2}+F_{t+2}] */
/* BHarris_min:Fw_t = 0.42323 F_t - 0.2486703 [ F_{t-1}+F_{t+1}] +
0.0391396 [F_{t-2}+F_{t+2}] */
switch (wintype) {
case PVS_WIN_HAMMING:
for (j=0; j<NB; j++) {
ff[j].re = FL(0.54)*fw[j].re;
ff[j].im = FL(0.54)*fw[j].im;
}
for (j=1; j<NB-1; j++) {
ff[j].re -= FL(0.23)*(fw[j+1].re + fw[j-1].re);
ff[j].im -= FL(0.23)*(fw[j+1].im + fw[j-1].im);
}
ff[0].re -= FL(0.46)*fw[1].re;
ff[NB-1].re -= FL(0.46)*fw[NB-2].re;
break;
case PVS_WIN_HANN:
for (j=0; j<NB; j++) {
ff[j].re = FL(0.5)*fw[j].re;
ff[j].im = FL(0.5)*fw[j].im;
}
for (j=1; j<NB-1; j++) {
ff[j].re -= FL(0.25)*(fw[j+1].re + fw[j-1].re);
ff[j].im -= FL(0.25)*(fw[j+1].im + fw[j-1].im);
}
ff[0].re -= FL(0.5)*fw[1].re;
ff[NB-1].re -= FL(0.5)*fw[NB-2].re;
break;
default:
csound->Warning(csound,
Str("Unknown window type; replaced by rectangular\n"));
/* FALLTHRU */
case PVS_WIN_RECT:
memcpy(ff, fw, NB*sizeof(CMPLX));
/* for (j=0; j<NB; j++) { */
/* ff[j].re = fw[j].re; */
/* ff[j].im = fw[j].im; */
/* } */
break;
case PVS_WIN_BLACKMAN:
for (j=0; j<NB; j++) {
ff[j].re = FL(0.42)*fw[j].re;
ff[j].im = FL(0.42)*fw[j].im;
}
for (j=1; j<NB-1; j++) {
ff[j].re -= FL(0.25)*(fw[j+1].re + fw[j-1].re);
ff[j].im -= FL(0.25)*(fw[j+1].im + fw[j-1].im);
}
for (j=2; j<NB-2; j++) {
ff[j].re += FL(0.04)*(fw[j+2].re + fw[j-2].re);
ff[j].im += FL(0.04)*(fw[j+2].im + fw[j-2].im);
}
ff[0].re += -FL(0.5)*fw[1].re + FL(0.08)*fw[2].re;
ff[NB-1].re += -FL(0.5)*fw[NB-2].re + FL(0.08)*fw[NB-3].re;
ff[1].re += -FL(0.5)*fw[2].re + FL(0.08)*fw[3].re;
ff[NB-2].re += -FL(0.5)*fw[NB-3].re + FL(0.08)*fw[NB-4].re;
break;
case PVS_WIN_BLACKMAN_EXACT:
for (j=0; j<NB; j++) {
ff[j].re = FL(0.42659071367153912296)*fw[j].re;
ff[j].im = FL(0.42659071367153912296)*fw[j].im;
}
for (j=1; j<NB-1; j++) {
ff[j].re -= FL(0.49656061908856405847)*FL(0.5)*(fw[j+1].re + fw[j-1].re);
ff[j].im -= FL(0.49656061908856405847)*FL(0.5)*(fw[j+1].im + fw[j-1].im);
}
for (j=2; j<NB-2; j++) {
ff[j].re += FL(0.076848667239896818573)*FL(0.5)*(fw[j+2].re + fw[j-2].re);
ff[j].im += FL(0.076848667239896818573)*FL(0.5)*(fw[j+2].im + fw[j-2].im);
}
ff[0].re += -FL(0.49656061908856405847) * fw[1].re
+ FL(0.076848667239896818573) * fw[2].re;
ff[NB-1].re += -FL(0.49656061908856405847) * fw[NB-2].re
+ FL(0.076848667239896818573) * fw[NB-3].re;
ff[1].re += -FL(0.49656061908856405847) * fw[2].re
+ FL(0.076848667239896818573) * fw[3].re;
ff[NB-2].re += -FL(0.49656061908856405847) * fw[NB-3].re
+ FL(0.076848667239896818573) * fw[NB-4].re;
break;
case PVS_WIN_NUTTALLC3:
for (j=0; j<NB; j++) {
ff[j].re = FL(0.375)*fw[j].re;
ff[j].im = FL(0.375)*fw[j].im;
}
for (j=1; j<NB-1; j++) {
ff[j].re -= FL(0.5)*FL(0.5)*(fw[j+1].re + fw[j-1].re);
ff[j].im -= FL(0.5)*FL(0.5)*(fw[j+1].im + fw[j-1].im);
}
for (j=2; j<NB-2; j++) {
ff[j].re += FL(0.125)*FL(0.5)*(fw[j+2].re + fw[j-2].re);
ff[j].im += FL(0.125)*FL(0.5)*(fw[j+2].im + fw[j-2].im);
}
ff[0].re += -FL(0.5) * fw[1].re + FL(0.125) * fw[2].re;
ff[NB-1].re += -FL(0.5) * fw[NB-2].re + FL(0.125) * fw[NB-3].re;
ff[1].re += -FL(0.5) * fw[2].re + FL(0.125) * fw[3].re;
ff[NB-2].re += -FL(0.5) * fw[NB-3].re + FL(0.125) * fw[NB-4].re;
ff[1].re = 0.5 * (fw[2].re + fw[0].re); /* HACK???? */
ff[1].im = 0.5 * (fw[2].im + fw[0].im);
break;
case PVS_WIN_BHARRIS_3:
for (j=0; j<NB; j++) {
ff[j].re = FL(0.44959)*fw[j].re;
ff[j].im = FL(0.44959)*fw[j].im;
}
for (j=1; j<NB-1; j++) {
ff[j].re -= FL(0.49364)*FL(0.5)*(fw[j+1].re + fw[j-1].re);
ff[j].im -= FL(0.49364)*FL(0.5)*(fw[j+1].im + fw[j-1].im);
}
for (j=2; j<NB-2; j++) {
ff[j].re += FL(0.05677)*FL(0.5)*(fw[j+2].re + fw[j-2].re);
ff[j].im += FL(0.05677)*FL(0.5)*(fw[j+2].im + fw[j-2].im);
}
ff[0].re += -FL(0.49364) * fw[1].re + FL(0.05677) * fw[2].re;
ff[NB-1].re += -FL(0.49364) * fw[NB-2].re + FL(0.05677) * fw[NB-3].re;
ff[1].re += -FL(0.49364) * fw[2].re + FL(0.05677) * fw[3].re;
ff[NB-2].re += -FL(0.49364) * fw[NB-3].re + FL(0.05677) * fw[NB-4].re;
ff[1].re = 0.5 * (fw[2].re + fw[0].re); /* HACK???? */
ff[1].im = 0.5 * (fw[2].im + fw[0].im);
break;
case PVS_WIN_BHARRIS_MIN:
for (j=0; j<NB; j++) {
ff[j].re = FL(0.42323)*fw[j].re;
ff[j].im = FL(0.42323)*fw[j].im;
}
for (j=1; j<NB-1; j++) {
ff[j].re -= FL(0.4973406)*FL(0.5)*(fw[j+1].re + fw[j-1].re);
ff[j].im -= FL(0.4973406)*FL(0.5)*(fw[j+1].im + fw[j-1].im);
}
for (j=2; j<NB-2; j++) {
ff[j].re += FL(0.0782793)*FL(0.5)*(fw[j+2].re + fw[j-2].re);
ff[j].im += FL(0.0782793)*FL(0.5)*(fw[j+2].im + fw[j-2].im);
}
ff[0].re += -FL(0.4973406) * fw[1].re + FL(0.0782793) * fw[2].re;
ff[NB-1].re += -FL(0.4973406) * fw[NB-2].re + FL(0.0782793) * fw[NB-3].re;
ff[1].re += -FL(0.4973406) * fw[2].re + FL(0.0782793) * fw[3].re;
ff[NB-2].re += -FL(0.4973406) * fw[NB-3].re + FL(0.0782793) * fw[NB-4].re;
ff[1].re = 0.5 * (fw[2].re + fw[0].re); /* HACK???? */
ff[1].im = 0.5 * (fw[2].im + fw[0].im);
break;
}
/* if (i==9) { */
/* printf("Frame as Amp/Freq %d\n", i); */
/* for (j = 0; j < NB; j++) */
/* printf("%d: %f\t%f\n", j, ff[j].re, ff[j].im); */
/* } */
for (j = 0; j < NB; j++) { /* Convert to AMP_FREQ */
double thismag = hypot(ff[j].re, ff[j].im);
double phase = atan2(ff[j].im, ff[j].re);
double angleDif = phase - h[j];
h[j] = phase;
/*subtract expected phase difference */
angleDif -= (double)j * TWOPI/N;
angleDif = mod2Pi(angleDif);
angleDif = angleDif * N /TWOPI;
ff[j].re = thismag;
ff[j].im = csound->esr * (j + angleDif)/N;
}
/* if (i==9) { */
/* printf("Frame as Amp/Freq %d\n", i); */
/* for (j = 0; j < NB; j++) */
/* printf("%d: %f\t%f\n", j, ff[j].re, ff[j].im); */
/* } */
}
p->inptr = loc;
return OK;
}
int32_t pvsanal(CSOUND *csound, PVSANAL *p)
{
MYFLT *ain;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t i, nsmps = CS_KSMPS;
ain = p->ain;
if (UNLIKELY(p->input.auxp==NULL)) {
return csound->PerfError(csound,&(p->h),
Str("pvsanal: Not Initialised.\n"));
}
{
int32_t overlap = (int32_t)*p->overlap;
if (overlap<(int32_t)nsmps || overlap<10) /* 10 is a guess.... */
return pvssanal(csound, p);
}
nsmps -= early;
for (i=offset; i < nsmps; i++)
anal_tick(csound,p,ain[i]);
return OK;
}
int32_t pvsynthset(CSOUND *csound, PVSYNTH *p)
{
MYFLT *analwinhalf;
MYFLT *synwinhalf;
MYFLT sum;
int32_t halfwinsize,buflen;
int32_t i,nBins,Mf,Lf;
double IO;
/* get params from input fsig */
/* we TRUST they are legal */
int32_t N = p->fsig->N;
int32_t overlap = p->fsig->overlap;
int32_t M = p->fsig->winsize;
int32_t wintype = p->fsig->wintype;
p->fftsize = N;
p->winsize = M;
p->overlap = overlap;
p->wintype = wintype;
p->format = p->fsig->format;
if (p->fsig->sliding) {
/* get params from input fsig */
/* we TRUST they are legal */
int32_t wintype = p->fsig->wintype;
/* and put into locals */
p->wintype = wintype;
p->format = p->fsig->format;
csound->AuxAlloc(csound, p->fsig->NB * sizeof(double), &p->oldOutPhase);
csound->AuxAlloc(csound, p->fsig->NB * sizeof(double), &p->output);
return OK;
}
/* and put into locals */
halfwinsize = M/2;
buflen = M*4;
IO = (double)overlap; /* always, no time-scaling possible */
p->arate = csound->esr / (MYFLT) overlap;
p->fund = csound->esr / (MYFLT) N;
nBins = N/2 + 1;
Lf = Mf = 1 - M%2;
/* deal with iinit later on! */
csound->AuxAlloc(csound, overlap * sizeof(MYFLT), &p->overlapbuf);
csound->AuxAlloc(csound, (N+2) * sizeof(MYFLT), &p->synbuf);
csound->AuxAlloc(csound, (M+Mf) * sizeof(MYFLT), &p->analwinbuf);
csound->AuxAlloc(csound, (M+Mf) * sizeof(MYFLT), &p->synwinbuf);
csound->AuxAlloc(csound, nBins * sizeof(MYFLT), &p->oldOutPhase);
csound->AuxAlloc(csound, buflen * sizeof(MYFLT), &p->output);
synwinhalf = (MYFLT *) (p->synwinbuf.auxp) + halfwinsize;
/* synthesis windows */
if (M <= N) {
if (UNLIKELY(PVS_CreateWindow(csound, synwinhalf, wintype, M) != OK))
return NOTOK;
for (i = 1; i <= halfwinsize; i++)
*(synwinhalf - i) = *(synwinhalf + i - Lf);
sum = FL(0.0);
for (i = -halfwinsize; i <= halfwinsize; i++)
sum += *(synwinhalf + i);
sum = FL(2.0) / sum;
for (i = -halfwinsize; i <= halfwinsize; i++)
*(synwinhalf + i) *= sum;
sum = FL(0.0);
/* no timescaling, so I(nterpolation) will always = D(ecimation) = overlap */
for (i = -halfwinsize; i <= halfwinsize; i+=overlap)
sum += *(synwinhalf + i) * *(synwinhalf + i);
}
else {
/* have to make analysis window to get amp scaling */
/* so this ~could~ be a local alloc and free...*/
double dN = (double)N;
analwinhalf = (MYFLT *) (p->analwinbuf.auxp) + halfwinsize;
if (UNLIKELY(PVS_CreateWindow(csound, analwinhalf, wintype, M) != OK))
return NOTOK;
for (i = 1; i <= halfwinsize; i++){
analwinhalf[-i] = analwinhalf[i - Mf];
}
// sinc function
if (Mf) {
*analwinhalf *= (MYFLT)(dN * sin(HALFPI/dN) / ( HALFPI));
}
for (i = 1; i <= halfwinsize; i++)
*(analwinhalf + i) *= (MYFLT)
(dN * sin((double)(PI*(i+0.5*Mf)/dN)) / (PI*(i+0.5*Mf)));
for (i = 1; i <= halfwinsize; i++)
*(analwinhalf - i) = *(analwinhalf + i - Mf);
/* get net amp */
sum = FL(0.0);
for (i = -halfwinsize; i <= halfwinsize; i++)
sum += *(analwinhalf + i);
sum = FL(2.0) / sum; /* factor of 2 comes in later in trig identity */
if (UNLIKELY(PVS_CreateWindow(csound, synwinhalf, wintype, M) != OK))
return NOTOK;
for (i = 1; i <= halfwinsize; i++)
*(synwinhalf - i) = *(synwinhalf + i - Lf);
if (Lf)
*synwinhalf *= (MYFLT)(IO * sin((double)(HALFPI/IO)) / (HALFPI));
for (i = 1; i <= halfwinsize; i++)
*(synwinhalf + i) *= (MYFLT)
((double)IO * sin((double)(PI*(i+0.5*Lf)/IO)) /
(PI*(i+0.5*(double)Lf)));
for (i = 1; i <= halfwinsize; i++)
*(synwinhalf - i) = *(synwinhalf + i - Lf);
}
if (!(N & (N - 1L)))
sum = csound->GetInverseRealFFTScale(csound, (int32_t) N)/ sum;
else
sum = FL(1.0) / sum;
for (i = -halfwinsize; i <= halfwinsize; i++)
*(synwinhalf + i) *= sum;
/* p->invR = FL(1.0) / csound->esr; */
p->RoverTwoPi = p->arate / TWOPI_F;
p->TwoPioverR = TWOPI_F / p->arate;
p->Fexact = csound->esr / (MYFLT)N;
p->nO = -(halfwinsize / overlap) * overlap; /* input time (in samples) */
p->Ii = 0; /* number of new outputs to write */
p->IOi = 0;
p->outptr = 0;
p->nextOut = (MYFLT *) (p->output.auxp);
p->buflen = buflen;
if (!(N & (N - 1))) /* if pow of two use this */
p->setup = csound->RealFFT2Setup(csound,N,FFT_INV);
return OK;
}
static MYFLT synth_tick(CSOUND *csound, PVSYNTH *p)
{
MYFLT *outbuf = (MYFLT *) (p->overlapbuf.auxp);
if (p->outptr== p->fsig->overlap) {
process_frame(csound, p);
p->outptr = 0;
}
return outbuf[p->outptr++];
}
static void process_frame(CSOUND *csound, PVSYNTH *p)
{
int32_t i,j,k,ii,NO,NO2;
float *anal; /* RWD MUST be 32bit */
MYFLT *syn, *output;
MYFLT *oldOutPhase = (MYFLT *) (p->oldOutPhase.auxp);
int32_t N = p->fsig->N;
MYFLT *obufptr,*outbuf,*synWindow;
MYFLT mag,phase,angledif, the_phase;
int32_t synWinLen = p->fsig->winsize / 2;
int32_t overlap = p->fsig->overlap;
/*int32 format = p->fsig->format; */
/* fsigs MUST be corect format, as we offer no mechanism for
assignment to a different one*/
NO = N; /* always the same */
NO2 = NO/2;
syn = (MYFLT *) (p->synbuf.auxp);
anal = (float *) (p->fsig->frame.auxp); /* RWD MUST be 32bit */
output = (MYFLT *) (p->output.auxp);
outbuf = (MYFLT *) (p->overlapbuf.auxp);
synWindow = (MYFLT *) (p->synwinbuf.auxp) + synWinLen;
/* reconversion: The magnitude and angle-difference-per-second in syn
(assuming an intermediate sampling rate of rOut) are
converted to real and imaginary values and are returned in syn.
This automatically incorporates the proper phase scaling for
time modifications. */
if (LIKELY(NO <= N)) {
for (i = 0; i < NO+2; i++)
syn[i] = (MYFLT) anal[i];
}
else {
for (i = 0; i <= N+1; i++)
syn[i] = (MYFLT) anal[i];
for (i = N+2; i < NO+2; i++)
syn[i] = FL(0.0);
}
#ifdef NOTDEF
if (format==PVS_AMP_PHASE) {
for (ii=0 /*, i0=syn, i1=syn+1*/; ii<= NO2; ii+=2 /* i++, i0+=2, i1+=2*/) {
mag = syn[ii]; /* *i0; */
phase = syn[ii+1]; /* *i1; */
/* *i0 */ syn[ii] = (MYFLT)((double)mag * cos((double)phase));
/* *i1 */ syn[ii+1] = (MYFLT)((double)mag * sin((double)phase));
}
}
else if (format == PVS_AMP_FREQ) {
#endif
for (i=ii=0 /*, i0=syn, i1=syn+1*/; i<= NO2; i++, ii+=2 /*i0+=2, i1+=2*/) {
mag = syn[ii]; /* *i0; */
/* RWD variation to keep phase wrapped within +- TWOPI */
/* this is spread across several frame cycles, as the problem does not
develop for a while */
angledif = p->TwoPioverR * ( /* *i1 */ syn[ii+1] - ((MYFLT)i * p->Fexact));
the_phase = /* *(oldOutPhase + i) */ oldOutPhase[i] + angledif;
if (i== p->bin_index)
the_phase = (MYFLT) fmod(the_phase,TWOPI);
/* *(oldOutPhase + i) = the_phase; */
oldOutPhase[i] = the_phase;
phase = the_phase;
/* *i0 */ syn[ii] = (MYFLT)((double)mag * cos((double)phase));
/* *i1 */ syn[ii+1] = (MYFLT)((double)mag * sin((double)phase));
}
#ifdef NOTDEF
}
#endif
/* for phase normalization */
if (++(p->bin_index) == NO2+1)
p->bin_index = 0;
/* else it must be PVOC_COMPLEX */
/* synthesis: The synthesis subroutine uses the Weighted Overlap-Add
technique to reconstruct the time-domain signal. The (N/2 + 1)
phase vocoder channel outputs at time n are inverse Fourier
transformed, windowed, and added into the output array. The
subroutine thinks of output as a shift register in which
locations are referenced modulo obuflen. Therefore, the main
program must take care to zero each location which it "shifts"
out (to standard output). The subroutines reals and fft
together perform an efficient inverse FFT. */
if (!(NO & (NO - 1))) {
/*printf("N %d %d \n", NO, NO & (NO-1));*/
syn[1] = syn[NO];
/* csound->InverseRealFFT(csound, syn, NO);*/
csound->RealFFT2(csound,p->setup,syn);
syn[NO] = syn[NO + 1] = FL(0.0);
}
else
csound->InverseRealFFTnp2(csound, syn, NO);
j = p->nO - synWinLen - 1;
while (j < 0)
j += p->buflen;
j = j % p->buflen;
k = p->nO - synWinLen - 1;
while (k < 0)
k += NO;
k = k % NO;
for (i = -synWinLen; i <= synWinLen; i++) { /*overlap-add*/
if (++j >= p->buflen)
j -= p->buflen;
if (++k >= NO)
k -= NO;
/* *(output + j) += *(syn + k) * *(synWindow + i); */
output[j] += syn[k] * synWindow[i];
}
obufptr = outbuf;
for (i = 0; i < p->IOi;) { /* shift out next IOi values */
int32_t todo = (p->IOi-i <= output+p->buflen - p->nextOut ?
p->IOi-i : output+p->buflen - p->nextOut);
/*outfloats(nextOut, todo, ofd);*/
/*copy data to external buffer */
/*for (n=0;n < todo;n++)
*obufptr++ = p->nextOut[n]; */
memcpy(obufptr, p->nextOut, sizeof(MYFLT)*todo);
obufptr += todo;
i += todo;
/* for (j = 0; j < todo; j++)
*p->nextOut++ = FL(0.0); */
memset(p->nextOut, 0, sizeof(MYFLT)*todo);
p->nextOut += todo;
if (p->nextOut >= (output + p->buflen))
p->nextOut -= p->buflen;
}
/* increment time */
p->nO += overlap;
if (p->nO > (synWinLen + /*I*/overlap))
p->Ii = overlap;
else
if (p->nO > synWinLen)
p->Ii = p->nO - synWinLen;
else {
p->Ii = 0;
for (i=p->nO+synWinLen; i<p->buflen; i++)
if (i > 0)
output[i] = FL(0.0);
}
p->IOi = p->Ii;
}
int32_t pvssynth(CSOUND *csound, PVSYNTH *p)
{
int32_t i, k;
int32_t ksmps = CS_KSMPS;
int32_t N = p->fsig->N;
int32_t NB = p->fsig->NB;
MYFLT *aout = p->aout;
CMPLX *ff;
double *h = (double*)p->oldOutPhase.auxp;
double *output = (double*)p->output.auxp;
/* Get real part from AMP/FREQ */
for (i=0; i<ksmps; i++) {
MYFLT a;
ff = (CMPLX*)(p->fsig->frame.auxp) + i*NB;
for (k=0; k<NB; k++) {
double tmp, phase;
tmp = ff[k].im; /* Actually frequency */
/* subtract bin mid frequency */
tmp -= (double)k * csound->esr/N;
/* get bin deviation from freq deviation */
tmp *= TWOPI /csound->esr;
/* add the overlap phase advance back in */
tmp += (double)k*TWOPI/N;
h[k] = phase = mod2Pi(h[k] + tmp);
output[k] = ff[k].re*cos(phase);
}
a = FL(0.0);
for (k=1; k<NB-1; k++) {
a -= output[k];
if (k+1<NB-1) a+=output[++k];
}
aout[i] = (a+a+output[0]-output[NB-1])/N;
}
return OK;
}
int32_t pvsynth(CSOUND *csound, PVSYNTH *p)
{
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t i, nsmps = CS_KSMPS;
MYFLT *aout = p->aout;
if (UNLIKELY(p->output.auxp==NULL)) {
return csound->PerfError(csound,&(p->h),
Str("pvsynth: Not Initialised.\n"));
}
if (p->fsig->sliding) return pvssynth(csound, p);
if (UNLIKELY(offset)) memset(aout, '\0', offset*sizeof(MYFLT));
if (UNLIKELY(early)) {
nsmps -= early;
memset(&aout[nsmps], '\0', early*sizeof(MYFLT));
}
for (i=offset; i<nsmps; i++)
aout[i] = synth_tick(csound, p);
return OK;
}
static void hamming(MYFLT *win, int32_t winLen, int32_t even)
{
double ftmp;
int32_t i;
ftmp = PI/winLen;
if (even) {
for (i=0; i<winLen; i++)
win[i] = (MYFLT)(0.54 + 0.46*cos(ftmp*((double)i+0.5)));
win[winLen] = FL(0.0);
}
else {
win[0] = FL(1.0);
for (i=1; i<=winLen; i++)
win[i] = (MYFLT)(0.54 + 0.46*cos(ftmp*(double)i));
}
}
double besseli(double x)
{
double ax, ans;
double y;
if (( ax = fabs( x)) < 3.75) {
y = x / 3.75;
y *= y;
ans = (1.0 + y * ( 3.5156229 +
y * ( 3.0899424 +
y * ( 1.2067492 +
y * ( 0.2659732 +
y * ( 0.360768e-1 +
y * 0.45813e-2))))));
}
else {
y = 3.75 / ax;
ans = ((exp ( ax) / sqrt(ax))
* (0.39894228 +
y * (0.1328592e-1 +
y * (0.225319e-2 +
y * (-0.157565e-2 +
y * (0.916281e-2 +
y * (-0.2057706e-1 +
y * (0.2635537e-1 +
y * (-0.1647633e-1 +
y * 0.392377e-2)))))))));
}
return ans;
}
static void vonhann(MYFLT *win, int32_t winLen, int32_t even)
{
MYFLT ftmp;
int32_t i;
ftmp = PI_F/winLen;
if (even) {
for (i=0; i<winLen; i++)
win[i] = (MYFLT)(0.5 + 0.5 * cos(ftmp*((double)i+0.5)));
win[winLen] = FL(0.0);
}
else {
win[0] = FL(1.0);
for (i=1; i<=winLen; i++)
win[i] = (MYFLT)(0.5 + 0.5 * cos(ftmp*(double)i));
}
}
|