1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
/*
babo.c:
Copyright (C) 2000 Davide Rocchesso, Nicola Bernardini
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
/***************************************************************************
* vi:set nowrap ts=4:
*
* Ball-within-a-box physical model reverberator
* originally written by Paolo Filippi (paolfili@ml.swapnet.it) of CSC
* (Centro di Sonologia Computazionale - Universita' di Padova, Italia)
*
* Model of a rectangular enclosure implemented by means of a
* Circulant Feedback Delay Network
*
* The name BaBo and the whole structure of the model is
* described in the article :
* [1] D. Rocchesso "The Ball within the Box: a sound-processing
* metaphor", Computer Music Journal, Vol 19, N. 4,
* pp. 45-47, Winter 1995.
*
* Circulant Feedback Delay Networks (CFDN) are described in the article:
* [2] D. Rocchesso and J.O. Smith "Circulant and Elliptic Feedback Delay Networks
* for Artificial Reverberation", IEEE Trans. on Speech and
* Audio Processing, vol. 5, n. 1, pp. 51-63, jan. 1997.
*
* Maximally-Diffusive CFDNs are described in the letter:
* [3] D. Rocchesso "Maximally-Diffusive yet Efficient Feedback Delay Networks
* for Artificial Reverberation", IEEE Signal Processing Letters,
* vol. 4, n. 9, pp. 252-255, sep. 1997.
*
* This implementation has been developed under the advice of
* Davide Rocchesso (rocchesso@sci.univr.it) and
* Nicola Bernardini (nicb@axnet.it)
*
* $Id$
*
***************************************************************************/
/*
* You will find the functions you are looking for (probably baboset()
* and babo()) at the end of this file. Before that, there is some
* explanation of the structure of babo and then a bunch of private
* functions used by baboset() and babo().
*/
/*
* In general, (x,y,z) are coordinates in a three-dimensional space, either
* of the sound source or of the pickup point (we use a pair of omnidi-
* rectional pickups aligned with the x axis).
* When the diffusion is maximal, each row of the matrix contains a
* maximum-length sequence of +1 and -1. When the diffusion is minimal, the
* matrix is diagonal. The continuous control of diffusion is done by moving
* the eigenvalues along the unit circle and taking the inverse discrete fourier
* transform of them [2,3].
*/
/*------------------------------------------------------------------------*\
BABO STRUCTURE
^^^^ ^^^^^^^^^
____
------>| |tap0 (direct)
input | |------>|
| T |tap1 |
| A |------>|
| P |tap2 |
| L |------>| _____________________________
| I | | | |
| N |......>| +------------| g(0) g(1) g(2) ... g(14) |-------+
| E |tap6 | | +---------| g(14) g(0) g(1) ... g(13) |-----+ |
| |------>| | | +------| g(13) g(14) g(0) ... g(12) |----+| |
|____| | | | | | | .......................... | || |
| | | | | | .......................... |....|| |
| | | | | | .......................... | .|| |
| | | | | +---| g(1) g(2) g(3) ... g(0) |-+ .|| |
| | | | | | |_____________________________| | .|| |
| | | | | | | .|| |
| | | | | | | .|| |
| | | | | | | .|| |
----|-(+)-|--|--|-----(z0)--------------------------+-.||-+
| | | | | | .|| |
----|----(+)-|--|--------------(z1)-----------------|-.|+ |
| | | | | .|| |
----|-------(+)-|--------------------(z2)-----------|-.+| |
| | | | .|| |
....|...........|...................................|.+|| |
| | | | .|| |
----|----------(+)-------------------------(z14)----+ .|| |
| tapline_out ( + )
| |
| |
| |
| | early_diffuse |
| v (1 - early_diffuse)->(*)
|------------(*)----------------------------------(+)
|
|+-->
\*-------------------------------------------------------------------------*/
/* Changes by JPff: #define'd out include of "config.h"
Defined FLT_MAX
Move static fn declarations out of function
*/
//#include "csdl.h"
#include "csoundCore.h"
#include "babo.h"
#include <math.h>
#include "interlocks.h"
#if !defined(FLT_MAX)
#define FLT_MAX (1.0e38)
#endif
static const int32_t sound_speed = 330;
/*
* private Babo tools
*/
#define square(x) ((x)*(x))
/*
* Memory allocation object methods
*
* (this object is a bit funny because it is in fact a wrapper of the
* memory allocation functions in csound)
*/
static BaboMemory *
BaboMemory_create(CSOUND *csound, BaboMemory *this, size_t size_in_floats)
{
size_t size_in_bytes = size_in_floats * sizeof(MYFLT);
csound->AuxAlloc(csound, size_in_bytes, &this->memptr);
//memset(this->memptr.auxp, 0, size_in_bytes);
this->samples = size_in_floats;
return this;
}
static inline size_t
BaboMemory_samples(const BaboMemory *this)
{
return this->samples;
}
static inline MYFLT *
BaboMemory_start(const BaboMemory *this)
{
return (MYFLT *) this->memptr.auxp;
}
static inline MYFLT *
BaboMemory_end(const BaboMemory *this)
{
return (MYFLT *) this->memptr.endp;
}
/* static inline MYFLT * */
/* BaboMemory_size(const BaboMemory *this) */
/* { */
/* return (MYFLT *) this->memptr.size; */
/* } */
/*
* common delay/tapline methods
*/
static void
_Babo_common_delay_create(CSOUND *csound, BaboDelay *this, MYFLT max_time)
{
size_t num_floats =
(size_t)MYFLT2LRND((MYFLT)ceil((double)(max_time*CS_ESR)));
BaboMemory_create(csound, &this->core, num_floats);
}
/*
* Babo Delay object methods
*/
static BaboDelay *
BaboDelay_create(CSOUND *csound, BaboDelay *this, MYFLT max_time)
{
_Babo_common_delay_create(csound, this, max_time);
this->input = BaboMemory_start(&this->core);
return this;
}
static MYFLT
BaboDelay_input(BaboDelay *this, MYFLT input)
{
*this->input++ = input;
if (this->input >= BaboMemory_end(&this->core))
this->input -= BaboMemory_samples(&this->core);
return input;
}
static MYFLT
BaboDelay_output(const BaboDelay *this)
{
size_t num_samples = BaboMemory_samples(&this->core);
MYFLT *output_ptr = this->input - (num_samples - 1);
if (output_ptr < BaboMemory_start(&this->core))
output_ptr += num_samples;
return *output_ptr;
}
/*
* Babo Tapline object methods
*/
/*
* The tapline is created with a size that is dependent on the size
* of the room (selected at i-time)
*/
static BaboTapline *
BaboTapline_create(CSOUND *csound, BaboTapline *this, MYFLT x, MYFLT y, MYFLT z)
{
MYFLT max_time = (FL(2.0) * SQRT((x*x) + (y*y) + (z*z))) / sound_speed;
_Babo_common_delay_create(csound, (BaboDelay *) this, max_time);
this->input = BaboMemory_start(&this->core);
return this;
}
static inline MYFLT
BaboTapline_maxtime(CSOUND *csound, BaboDelay *this)
{
return (((MYFLT) BaboMemory_samples(&this->core)) * csound->onedsr);
}
static inline MYFLT
BaboTapline_input(BaboTapline *this, MYFLT input)
{
return BaboDelay_input((BaboDelay *) this, input);
}
typedef struct
{
MYFLT attenuation;
MYFLT delay_size;
} BaboTapParameter;
typedef struct
{
BaboTapParameter direct;
BaboTapParameter tap[BABO_TAPS];
} BaboTaplineParameters;
/*
* BaboTapline_single_output:
* this function calculates the delay output by doing linear interpolation
* between the two adjacent integer sample delays of an otherwise fractional
* delay time. This is why BaboTapParameter.delay_size is kept as a float
* in the first place.
*/
/* a-rate function */
static MYFLT BaboTapline_single_output(const BaboTapline *this,
const BaboTapParameter *pp)
{
/*
* the assignment right below should be really a floor(p->delay_size),
* but apparently floor() calls are really expensive on some
* architectures (notably Pentiums), so we do a simple cast to a
* size_t instead. This should always work, but I cannot test it on
* other architectures than mine (k6), so it potentially is a source
* of problems. [nicb@axnet.it]
*/
size_t delay_floor = (size_t) pp->delay_size;
size_t delay_ceil = delay_floor + 1;
MYFLT fractional = pp->delay_size - (MYFLT) delay_floor;
MYFLT *output_floor = this->input - delay_floor;
MYFLT *output_ceil = this->input - delay_ceil;
MYFLT output = FL(0.0);
if (output_floor < BaboMemory_start(&this->core))
output_floor += BaboMemory_samples(&this->core);
if (output_ceil < BaboMemory_start(&this->core))
output_ceil += BaboMemory_samples(&this->core);
output = (*output_floor*(1-fractional)) + (*output_ceil*fractional);
return output * pp->attenuation;
}
/* k-rate function */
static inline void BaboTapline_preload_parameter(CSOUND *csound,
BaboTapParameter *this,
MYFLT distance)
{
/*
* Direct sound parameters at the input of delay tap_lines.
* Right and left direct_att is not really physical, but ensures that:
* direct_att=(1/2) when distance is 1 m
* direct_att=1 when distance is 0 m.
*/
this->delay_size = (distance / sound_speed) * CS_ESR;
this->attenuation = FL(1.0) / (FL(1.0) + distance);
}
/* k-rate function */
static BaboTaplineParameters *
BaboTapline_precalculate_parameters(
CSOUND *csound, BaboTaplineParameters *results,
MYFLT r_x, MYFLT r_y, MYFLT r_z, /* receiver position (i-rate) */
MYFLT s_x, MYFLT s_y, MYFLT s_z, /* source position (k-rate) */
MYFLT l_x, MYFLT l_y, MYFLT l_z) /* room coords (i-rate) */
{
MYFLT sqr_xy, sqr_yz, sqr_xz, /* x^2+y^2 y^2+z^2 ....... */
sqr_diff_x, sqr_diff_y, sqr_diff_z; /* optimization temps */
/* image method distance calculation */
sqr_diff_x = square(r_x - s_x);
sqr_diff_y = square(r_y - s_y);
sqr_diff_z = square(r_z - s_z);
sqr_yz = sqr_diff_y + sqr_diff_z;
sqr_xz = sqr_diff_x + sqr_diff_z;
sqr_xy = sqr_diff_x + sqr_diff_y;
BaboTapline_preload_parameter(csound, &results->direct,
SQRT(sqr_diff_x + sqr_yz));
BaboTapline_preload_parameter(csound, &results->tap[0],
SQRT(square(l_x + r_x + s_x) + sqr_yz));
BaboTapline_preload_parameter(csound, &results->tap[1],
SQRT(square(l_x - r_x - s_x) + sqr_yz));
BaboTapline_preload_parameter(csound, &results->tap[2],
SQRT(sqr_xz + square(l_y - r_y - s_y)));
BaboTapline_preload_parameter(csound, &results->tap[3],
SQRT(sqr_xz + square(l_y + r_y + s_y)));
BaboTapline_preload_parameter(csound,
&results->tap[4],
SQRT(sqr_xy + square(l_z - r_z - s_z)));
BaboTapline_preload_parameter(csound,
&results->tap[5],
SQRT(sqr_xy + square(l_z + r_z + s_z)));
return results;
}
/* a-rate function */
static MYFLT
BaboTapline_output(CSOUND *csound, const BaboTapline *this,
const BaboTaplineParameters *pars)
{
IGN(csound);
int32_t i;
MYFLT output = BaboTapline_single_output(this, &pars->direct);
for (i = 0; i < BABO_TAPS; ++i)
output += BaboTapline_single_output(this, &pars->tap[i]);
return output;
}
/*
* Babo lowpass filter object methods
*/
static BaboLowPass *
BaboLowPass_create(BaboLowPass *this, MYFLT decay, MYFLT hidecay, MYFLT norm)
{
MYFLT real_decay = EXP(norm * LOG(decay));
MYFLT real_hidecay = EXP(norm * LOG(hidecay));
this->a0 = (real_decay + real_hidecay) * FL(0.25);
this->a1 = (real_decay - real_hidecay) * FL(0.5);
this->z1 = this->z2 = FL(0.0);
return this;
}
static inline MYFLT
BaboLowPass_input(BaboLowPass *this, MYFLT input)
{
this->z2 = this->z1;
this->z1 = this->input;
this->input = input;
return input;
}
static inline MYFLT
BaboLowPass_output(const BaboLowPass *this)
{
return (this->a0 * this->input) +
(this->a1 * this->z1) +
(this->a0 * this->z2);
}
/*
* Babo node object methods
*/
static BaboNode *
BaboNode_create(CSOUND *csound, BaboNode *this, MYFLT time,
MYFLT min_time, MYFLT decay,
MYFLT hidecay)
{
BaboDelay_create(csound, &this->delay, time);
BaboLowPass_create(&this->filter, decay, hidecay, time/min_time);
return this;
}
static inline MYFLT
BaboNode_input(BaboNode *this, MYFLT input)
{
return BaboDelay_input(&this->delay, input);
}
static inline void
BaboNode_feed_filter(BaboNode *this)
{
BaboLowPass_input(&this->filter, BaboDelay_output(&this->delay));
}
static inline MYFLT
BaboNode_output(const BaboNode *this)
{
return BaboLowPass_output(&this->filter);
}
/*
* Babo Matrix object methods
*/
static void
BaboMatrix_create_FDN(BaboMatrix *this, MYFLT diffusion)
{
int32_t i,j;
MYFLT _2PI_NODES = TWOPI_F / BABO_NODES;
/*
* The following sequence of eigenvalues provides, by IDFT,
* the maximally diffusive sequence, i.e. a row of the circulant
* feedback matrix.
* eigenvalues are expressed in radians, because only the argument
* is expressed, since the magnitude is one
*/
const MYFLT max_diffusion_eigenvalues[BABO_NODES]=
{
FL(3.142592),
-FL(1.7370),
-FL(2.1559),
-FL(1.2566),
-FL(2.9936),
FL(1.0472),
-FL(2.5133),
-FL(1.6140),
FL(1.6140),
FL(2.5133),
-FL(1.0472),
FL(2.9936),
FL(1.2566),
FL(2.1559),
FL(1.7370)
};
/*
* Here we multiply the arguments of the sequence of eigenvalues by
* p->idiffusion_coeff. In this way we scale the amount of diffusion
* Range of diffusion: 0 = no diffusion
* 1 = maximum diffusion
*/
MYFLT real_X[BABO_NODES] = { FL(0.0) },
imaginary_X[BABO_NODES] = { FL(0.0) },
arg_X[BABO_NODES] = { FL(0.0) },
real_x[BABO_NODES] = { FL(0.0) };
for (i = 0; i < BABO_NODES; ++i)
{
real_X[i] = imaginary_X[i] = FL(0.0);
arg_X[i] = max_diffusion_eigenvalues[i] * diffusion;
real_X[i] = COS(arg_X[i]);
imaginary_X[i] = SIN(arg_X[i]);
}
/*
* The Real part of the InverseDFT of the eigenvalues supplies the
* circulant matrix coefficients.
*/
for (i = 0; i < BABO_NODES; ++i)
for (j = 0; j < BABO_NODES; ++j)
real_x[j] += (real_X[j] * COS(_2PI_NODES*i*j)-
imaginary_X[j] * SIN(_2PI_NODES*i*j))/BABO_NODES;
for (i = 0; i < BABO_NODES; ++i)
for (j = 0; j < BABO_NODES; ++j)
this->fdn[i][j] = real_x[(j-i+15) % BABO_NODES];
}
static MYFLT
BaboMatrix_calculate_delays(MYFLT delay_time[], MYFLT x, MYFLT y, MYFLT z)
{
int32_t i = 0;
MYFLT min = FL(0.0);
static const struct babo_diffusion_constants
{
int32_t x, y, z;
} BABO_DIRECTIONS[] =
{
/*
* Each triplet is a mode identifier.
* E.g. {1,0,0} is the first axial mode
*/
{ 1, 0, 0 },
{ 2, 1, 0 },
{ 1, 1, 0 },
{ 1, 2, 0 },
{ 0, 1, 0 },
{ 0, 2, 1 },
{ 0, 1, 1 },
{ 0, 1, 2 },
{ 0, 0, 1 },
{ 1, 0, 2 },
{ 1, 0, 1 },
{ 1, 1, 1 },
{ 1, 2, 1 },
{ 2, 1, 1 },
{ 2, 0, 1 }
};
/*
* we calculate the delays related to each node, in the following
* way:
*
* 2
* delay[i] = -----------------------------------------------
* +-----------------------------------
* sound_speed * \ / | |2 | |2 | |2
* \/ | x[i] | | y[i] | | z[i] |
* | ----- | + | ----- | + | ----- |
* | X | | Y | | Z |
*
* and we keep a notion of the minimum delay path which is
* needed later on to do the rescaling of the decay and hidecay
* parameters.
*/
min = (MYFLT)FLT_MAX; /* let's initialize this with something really big */
for (i = 0; i < BABO_NODES; ++i)
{
const struct babo_diffusion_constants *dbdp = &BABO_DIRECTIONS[i];
delay_time[i] = FL(2.0) / (sound_speed *
SQRT(((dbdp->x/x) * (dbdp->x/x)) +
((dbdp->y/y) * (dbdp->y/y)) +
((dbdp->z/z) * (dbdp->z/z))));
min = min > delay_time[i] ? delay_time[i] : min;
}
return min;
}
static BaboMatrix *
BaboMatrix_create(CSOUND *csound,
BaboMatrix *this, MYFLT diffusion, MYFLT x, MYFLT y,
MYFLT z, MYFLT decay, MYFLT hidecay, MYFLT early_diffusion)
{
int32_t i = 0;
MYFLT delays[BABO_NODES];
MYFLT min_delay = BaboMatrix_calculate_delays(delays, x, y, z);
this->complementary_early_diffusion = FL(1.0) - early_diffusion;
BaboMatrix_create_FDN(this, diffusion);
for (i = 0; i < BABO_NODES; ++i)
BaboNode_create(csound, &this->node[i], delays[i],
min_delay, decay, hidecay);
return this;
}
static inline MYFLT
BaboMatrix_coefficient(const BaboMatrix *this, int32_t x, int32_t y)
{
return this->fdn[x][y];
}
/* a-rate function */
static void
BaboMatrix_output(BaboMatrix *this, MYFLT outputs[], MYFLT input,
MYFLT diffusion_coeff)
{
MYFLT filter_tmpout[BABO_NODES] = { FL(0.0) },
tmp2[BABO_NODES] = { FL(0.0) };
register int32_t i = 0, j = 0;
for (i = 0; i < BABO_NODES; ++i)
{
filter_tmpout[i] = BaboNode_output(&this->node[i]);
BaboNode_feed_filter(&this->node[i]);
}
/*
* Here the matrix-by-vector multiply takes place, xout is the
* column vector.
* The mod(BABO_NODES) operation allows to write the circulant matrix-
* by-vector multiply in a compact way.
*/
for (i = 0; i < BABO_NODES; ++i)
{
for (j = 0; j < BABO_NODES; ++j)
tmp2[i] += BaboMatrix_coefficient(this, i, j) * filter_tmpout[j];
BaboNode_input(&this->node[i], tmp2[i] + input);
/* We add delayed signal at the input of ^^^^^ the delay lines. */
}
outputs[0] = outputs[1] = BaboNode_output(&this->node[0]) +
BaboNode_output(&this->node[4]) +
BaboNode_output(&this->node[8]);
outputs[0] += (diffusion_coeff *
((BaboNode_output(&this->node[7]) +
BaboNode_output(&this->node[12]))));
outputs[1] += (diffusion_coeff *
((BaboNode_output(&this->node[9]) +
BaboNode_output(&this->node[13]))));
outputs[0] *= this->complementary_early_diffusion;
outputs[1] *= this->complementary_early_diffusion;
}
/*
* private utility functions
*/
static void resolve_defaults(BABO *p);
static void set_expert_values(CSOUND *csound, BABO *p);
static void
set_defaults(CSOUND *csound, BABO *p)
{
resolve_defaults(p);
p->diffusion_coeff = p->diffusion_coeff < 0 ?
BABO_DEFAULT_DIFFUSION_COEFF : p->diffusion_coeff;
set_expert_values(csound,p);
/*
* the user supplies, optionally, the complete distance
* or else it is set by default
* we divide by two because it is more handy to deal
* with half the distance in the program (i.e. the distance
* from a center point)
*/
p->inter_receiver_distance *= FL(0.5);
}
static void
resolve_defaults(BABO *p)
{
/*
* in typical csound backward logic :), the defaults may or may not,
* depending on how they're used in the orchestra definition,
* turn out to run on the same pointer - so, basically all optional
* argument values have to be copied (from last to first) in separate
* "real" values inside the entry structure in order to be used
*/
p->expert_values = *(p->oexpert_values);
p->diffusion_coeff = *(p->odiffusion_coeff);
}
static inline MYFLT
load_value_or_default(const FUNC *table, int32_t idx, MYFLT dEfault)
{
MYFLT result = (table != (FUNC *) NULL && idx < (int32)table->flen) ?
table->ftable[idx] : dEfault;
return result;
}
static void
set_expert_values(CSOUND *csound, BABO *p)
{
FUNC *ftp = (FUNC *) NULL; /* brain-damaged function calling */
int32_t n = 0;
if (p->expert_values > 0)
ftp = csound->FTnp2Finde(csound, &(p->expert_values));
p->decay = load_value_or_default(ftp, n++, BABO_DEFAULT_DECAY);
p->hidecay = load_value_or_default(ftp, n++, BABO_DEFAULT_HIDECAY);
p->receiver_x = load_value_or_default(ftp, n++, BABO_DEFAULT_RECV_X);
p->receiver_y = load_value_or_default(ftp, n++, BABO_DEFAULT_RECV_Y);
p->receiver_z = load_value_or_default(ftp, n++, BABO_DEFAULT_RECV_Z);
p->inter_receiver_distance = load_value_or_default(ftp, n++,
BABO_DEFAULT_INTER_RECV_DISTANCE);
p->direct = load_value_or_default(ftp, n++, BABO_DEFAULT_DIRECT);
p->early_diffuse= load_value_or_default(ftp, n++, BABO_DEFAULT_DIFFUSE);
}
static void
verify_coherence(CSOUND *csound, BABO *p)
{
if (UNLIKELY(*(p->lx) <= FL(0.0) ||
*(p->ly) <= FL(0.0) ||
*(p->lz) <= FL(0.0))) {
csound->Warning(csound, Str("Babo: resonator dimensions are incorrect "
"(%.1f, %.1f, %.1f)"),
*(p->lx), *(p->ly), *(p->lz));
}
}
/*
* PUBLIC FUNCTIONS - baboset(), babo()
*
* these get called from the csound engine
*
*/
static int32_t
baboset(CSOUND *csound, void *entry)
{
BABO *p = (BABO *) entry; /* assuming the engine is right... :) */
set_defaults(csound,p);
verify_coherence(csound,p); /* exits if call is wrong */
BaboTapline_create(csound,&p->tapline, *(p->lx), *(p->ly), *(p->lz));
BaboDelay_create(csound, &p->matrix_delay,
BaboTapline_maxtime(csound, &p->tapline));
BaboMatrix_create(csound, &p->matrix, p->diffusion_coeff, *(p->lx),
*(p->ly), *(p->lz), p->decay, p->hidecay, p->early_diffuse);
return OK;
}
static int32_t
babo(CSOUND *csound, void *entry)
{
BABO *p = (BABO *) entry;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
MYFLT *outleft = p->outleft,
*outright = p->outright,
*input = p->input;
BaboTaplineParameters left = { {FL(0.0)}, {{FL(0.0)}} },
right = { {FL(0.0)}, {{FL(0.0)}} };
BaboTapline_precalculate_parameters(csound, &left,
p->receiver_x - p->inter_receiver_distance,
p->receiver_y, p->receiver_z,
*(p->ksource_x), *(p->ksource_y),
*(p->ksource_z),
*(p->lx), *(p->ly), *(p->lz));
BaboTapline_precalculate_parameters(csound, &right,
p->receiver_x + p->inter_receiver_distance,
p->receiver_y, p->receiver_z,
*(p->ksource_x), *(p->ksource_y), *(p->ksource_z),
*(p->lx), *(p->ly), *(p->lz));
if (UNLIKELY(offset)) {
memset(outleft, '\0', offset*sizeof(MYFLT));
memset(outright, '\0', offset*sizeof(MYFLT));
} if (UNLIKELY(early)) {
nsmps -= early;
memset(&outleft[nsmps], '\0', early*sizeof(MYFLT));
memset(&outright[nsmps], '\0', early*sizeof(MYFLT));
}
for (n=offset; n<nsmps; n++) { /* k-time cycle */
MYFLT left_tapline_out = FL(0.0),
right_tapline_out = FL(0.0),
delayed_matrix_input = FL(0.0);
MYFLT matrix_outputs[2] = { FL(0.0) };
BaboTapline_input(&p->tapline, input[n]);
BaboDelay_input(&p->matrix_delay, input[n]);
left_tapline_out = BaboTapline_output(csound, &p->tapline, &left) *
p->early_diffuse;
right_tapline_out = BaboTapline_output(csound, &p->tapline, &right) *
p->early_diffuse;
delayed_matrix_input = BaboDelay_output(&p->matrix_delay);
BaboMatrix_output(&p->matrix, matrix_outputs, delayed_matrix_input,
p->diffusion_coeff);
outleft[n] = left_tapline_out + matrix_outputs[0];
outright[n] = right_tapline_out + matrix_outputs[1];
}
return OK;
}
#define S(x) sizeof(x)
static OENTRY babo_localops[] = {
{ "babo", S(BABO), TR, 3, "aa", "akkkiiijj",(SUBR)baboset, (SUBR)babo },
};
LINKAGE_BUILTIN(babo_localops)
|