1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*
bowedbar.c:
Copyright (C) 1999 Perry Cook, Georg Essl, John ffitch
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*********************************************/
/* Bowed Bar model */
/* by Georg Essl, 1999 */
/* For details refer to: */
/* G.Essl, P.R.Cook: "Banded Waveguides: */
/* Towards Physical Modelling of Bar */
/* Percussion Instruments", ICMC'99 */
/*********************************************/
// #include "csdl.h"
#include "csoundCore.h"
#include "bowedbar.h"
/* Number of banded waveguide modes */
static void make_DLineN(CSOUND *csound, DLINEN *p, int32 length)
{
/* Writing before reading allows delays from 0 to length-1.
Thus, if we want to allow a delay of max_length, we need
a delay-line of length = max_length+1. */
p->length = length = length+1;
csound->AuxAlloc(csound, length * sizeof(MYFLT), &p->inputs);
p->inPoint = 0;
p->outPoint = length >> 1;
p->lastOutput = FL(0.0);
}
static void DLineN_setDelay(CSOUND *csound, DLINEN *p, int32_t lag)
{
if (UNLIKELY(lag > p->length-1)) { /* if delay is too big, */
csound->Warning(csound, Str("DLineN: Delay length too big ... setting to "
"maximum length of %d.\n"), p->length - 1);
p->outPoint = p->inPoint + 1; /* force delay to max_length */
}
else
p->outPoint = p->inPoint - (int32) lag; /* read chases write */
while (p->outPoint<0)
p->outPoint += p->length; /* modulo maximum length */
}
static void DLineN_tick(DLINEN *p, MYFLT sample) /* Take one, yield one */
{
MYFLT *xx = (MYFLT*)p->inputs.auxp;
xx[p->inPoint++] = sample; /* Input next sample */
if (UNLIKELY(p->inPoint == p->length)) /* Check for end condition */
p->inPoint -= p->length;
p->lastOutput = xx[p->outPoint++]; /* Read nxt value */
if (UNLIKELY(p->outPoint>=p->length)) /* Check for end condition */
p->outPoint -= p->length;
}
int32_t bowedbarset(CSOUND *csound, BOWEDBAR *p)
{
int32 i;
MYFLT amplitude = *p->amp * AMP_RSCALE;
p->modes[0] = FL(1.0);
p->modes[1] = FL(2.756);
p->modes[2] = FL(5.404);
p->modes[3] = FL(8.933);
make_BiQuad(&p->bandpass[0]);
make_BiQuad(&p->bandpass[1]);
make_BiQuad(&p->bandpass[2]);
make_BiQuad(&p->bandpass[3]);
make_ADSR(&p->adsr);
ADSR_setAllTimes(csound, &p->adsr, FL(0.02), FL(0.005), FL(0.9), FL(0.01));
if (LIKELY(*p->lowestFreq>=FL(0.0))) { /* If no init skip */
if (*p->lowestFreq!=FL(0.0))
p->length = (int32) (CS_ESR / *p->lowestFreq + FL(1.0));
else if (*p->frequency!=FL(0.0))
p->length = (int32) (CS_ESR / *p->frequency + FL(1.0));
else {
csound->Warning(csound,
Str("unknown lowest frequency for bowed bar -- "
"assuming 50Hz\n"));
p->length = (int32) (CS_ESR / FL(50.0) + FL(1.0));
}
}
p->nr_modes = NR_MODES;
for (i = 0; i<NR_MODES; i++) {
make_DLineN(csound, &p->delay[i], p->length);
DLineN_setDelay(csound, &p->delay[i], (int32_t)(p->length/p->modes[i]));
BiQuad_clear(&p->bandpass[i]);
}
/* p->gains[0] = FL(0.0); */
/* p->gains[1] = FL(0.0); */
/* p->gains[2] = FL(0.0); */
/* p->gains[3] = FL(0.0); */
p->adsr.target = FL(0.0);
p->adsr.value = FL(0.0);
p->adsr.rate = amplitude * FL(0.001);
p->adsr.state = ATTACK;
p->lastBowPos = FL(0.0);
p->bowTarg = FL(0.0);
p->freq = -FL(1.0);
p->lastpos = -FL(1.0);
p->lastpress = p->bowvel = p->velinput = FL(0.0);
p->kloop = 0;
p->bowTabl.offSet = p->bowTabl.slope = FL(0.0);
return OK;
}
int32_t bowedbar(CSOUND *csound, BOWEDBAR *p)
{
MYFLT *ar = p->ar;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
MYFLT amp = (*p->amp)*AMP_RSCALE; /* Normalise */
int32 k;
int32_t i;
MYFLT maxVelocity;
MYFLT integration_const = *p->integration_const;
if (p->lastpress != *p->bowPress)
p->bowTabl.slope = p->lastpress = *p->bowPress;
if (p->freq != *p->frequency) {
p->freq = *p->frequency;
if (p->freq > FL(1568.0)) p->freq = FL(1568.0);
p->length = (int32_t)(CS_ESR/p->freq);
p->nr_modes = NR_MODES; /* reset for frequency shift */
for (i = 0; i<NR_MODES; i++) {
if ((int32_t)(p->length/p->modes[i]) > 4)
DLineN_setDelay(csound, &p->delay[i], (int32_t)(p->length/p->modes[i]));
else {
p->nr_modes = i;
break;
}
}
if (UNLIKELY(p->nr_modes==0))
return csound->InitError(csound,
Str("Bowedbar: cannot have zero modes\n"));
for (i=0; i<p->nr_modes; i++) {
MYFLT R = FL(1.0) - p->freq * p->modes[i] * csound->pidsr;
BiQuad_clear(&p->bandpass[i]);
BiQuad_setFreqAndReson(p->bandpass[i], p->freq * p->modes[i], R);
BiQuad_setEqualGainZeroes(p->bandpass[i]);
BiQuad_setGain(p->bandpass[i], (FL(1.0)-R*R)*FL(0.5));
}
}
/* Bow position as well */
if (*p->position != p->lastpos) {
MYFLT temp2 = *p->position * PI_F;
p->gains[0] = FABS(SIN(temp2 * FL(0.5))) /* * pow(0.9,0))*/;
p->gains[1] = FABS(SIN(temp2) * FL(0.9));
p->gains[2] = FABS(SIN(temp2 * FL(1.5)) * FL(0.9)*FL(0.9));
p->gains[3] = FABS(SIN(temp2 * FL(2.0)) * FL(0.9)*FL(0.9)*FL(0.9));
p->lastpos = *p->position;
}
if (*p->bowposition != p->lastBowPos) { /* Not sure what this control is? */
p->bowTarg += FL(0.02) * (*p->bowposition - p->lastBowPos);
p->lastBowPos = *p->bowposition;
ADSR_setTarget(csound, &p->adsr, p->lastBowPos);
p->lastBowPos = *p->bowposition;
}
if (p->kloop>0 && p->h.insdshead->relesing) p->kloop=1;
if ((--p->kloop) == 0) {
ADSR_setReleaseRate(csound, &p->adsr, (FL(1.0) - amp) * FL(0.005));
p->adsr.target = FL(0.0);
p->adsr.rate = p->adsr.releaseRate;
p->adsr.state = RELEASE;
}
maxVelocity = FL(0.03) + (FL(0.5) * amp);
if (UNLIKELY(offset)) memset(ar, '\0', offset*sizeof(MYFLT));
if (UNLIKELY(early)) {
nsmps -= early;
memset(&ar[nsmps], '\0', early*sizeof(MYFLT));
}
for (n=offset; n<nsmps; n++) {
MYFLT data = FL(0.0);
MYFLT input = FL(0.0);
if (integration_const == FL(0.0))
p->velinput = FL(0.0);
else
p->velinput = integration_const * p->velinput;
for (k=0; k<p->nr_modes; k++) {
p->velinput += *p->GAIN * p->delay[k].lastOutput;
}
if (*p->trackVel) {
p->bowvel *= FL(0.9995);
p->bowvel += p->bowTarg;
p->bowTarg *= FL(0.995);
}
else
p->bowvel = ADSR_tick(&p->adsr)*maxVelocity;
input = p->bowvel - p->velinput;
input = input * BowTabl_lookup(csound, &p->bowTabl, input);
input = input/(MYFLT)p->nr_modes;
for (k=0; k<p->nr_modes; k++) {
BiQuad_tick(&p->bandpass[k],
input*p->gains[k] + *p->GAIN * p->delay[k].lastOutput);
DLineN_tick(&p->delay[k], p->bandpass[k].lastOutput);
data += p->bandpass[k].lastOutput;
}
ar[n] = data * AMP_SCALE * FL(20.0); /* 20 is an experimental value */
}
return OK;
}
|