1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/*
doppler.cpp
Copyright (C) 2014 Michael Gogins
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include <cmath>
#include <list>
#include <vector>
#include <OpcodeBase.hpp>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using namespace csound;
/* *************** does not deal with unaligned signals ************** */
class RCLowpassFilter {
public:
void initialize(MYFLT sampleRate, MYFLT cutoffHz, MYFLT initialValue) {
MYFLT tau = MYFLT(1.0) / (MYFLT(2.0) * M_PI * cutoffHz);
alpha = MYFLT(1.0) / (MYFLT(1.0) + (tau * sampleRate));
value = initialValue;
}
MYFLT update(MYFLT inputValue) {
value += alpha * (inputValue - value);
return value;
}
protected:
MYFLT alpha;
MYFLT value;
};
class LinearInterpolator {
public:
LinearInterpolator() : priorValue(MYFLT(0.0)), currentValue(MYFLT(0.0)) {}
virtual void put(MYFLT inputValue) {
priorValue = currentValue;
currentValue = inputValue;
}
virtual MYFLT get(MYFLT fraction) {
return priorValue + (fraction * (currentValue - priorValue));
}
virtual ~LinearInterpolator(){};
protected:
MYFLT priorValue;
MYFLT currentValue;
};
class DelayLine : public std::vector<MYFLT> {
public:
MYFLT sampleRate;
int32_t writingFrame;
int32_t size_;
void initialize(size_t sampleRate_, MYFLT maximumDelay = 10.0) {
sampleRate = (MYFLT)sampleRate_;
size_ = (int32_t)std::ceil(maximumDelay * sampleRate);
// std::cout << "DelayLine::initialize: size: " << size_ << std::endl;
// std::cout << "DelayLine::initialize: sampleRate: " << sampleRate <<
// std::endl;
resize(size_);
writingFrame = 0;
}
void write(MYFLT value) {
while (writingFrame >= size_) {
writingFrame -= size_;
}
(*this)[(size_t)writingFrame] = value;
// std::cout << "DelayLine::write: writingFrame: " << writingFrame <<
// std::endl;
writingFrame++;
}
MYFLT delaySeconds(MYFLT delaySeconds) {
int32_t delayFrames_ = (int32_t)(delaySeconds * sampleRate);
return delayFrames(delayFrames_);
}
MYFLT delayFrames(int32_t delayFrames_) {
// std::cout << "DelayLine::delayFrames: delayFrames: "
// << delayFrames_ << std::endl;
int32_t readingFrame = writingFrame - delayFrames_;
while (readingFrame < 0) {
readingFrame += size_;
}
while (readingFrame >= size_) {
readingFrame -= size_;
}
// std::cout << "DelayLine::delayFrames: readingFrame: "
// << readingFrame << std::endl;
return (*this)[(size_t)readingFrame];
}
};
class Doppler : public OpcodeNoteoffBase<Doppler> {
public:
// Csound opcode outputs.
MYFLT *audioOutput;
// Csound opcode inputs.
MYFLT *audioInput;
MYFLT *kSourcePosition; // usually meters
MYFLT *kMicPosition; // usually meters
MYFLT *jSpeedOfSound; // usually meters/second
MYFLT *jUpdateFilterCutoff; // Hz
// Doppler internal state.
MYFLT speedOfSound; // usually meters/second
MYFLT smoothingFilterCutoff; // Hz
MYFLT sampleRate; // Hz
MYFLT samplesPerDistance; // usually samples/meter
MYFLT blockRate; // Hz
int32_t blockSize; // samples
RCLowpassFilter *smoothingFilter;
LinearInterpolator *audioInterpolator;
std::list<std::vector<MYFLT> *> *audioBufferQueue;
std::list<MYFLT> *sourcePositionQueue;
int32_t relativeIndex;
int32_t currentIndex;
int32_t init(CSOUND *csound) {
sampleRate = csound->GetSr(csound);
blockRate = opds.insdshead->ekr;
blockSize = opds.insdshead->ksmps;
// Take care of default values.
if (*jSpeedOfSound == MYFLT(-1.0)) {
speedOfSound = MYFLT(340.29);
} else
speedOfSound = *jSpeedOfSound;
if (*jUpdateFilterCutoff == MYFLT(-1.0)) {
// MYFLT blockRateNyquist = blockRate / MYFLT(2.0);
// *jUpdateFilterCutoff = blockRateNyquist / MYFLT(2.0);
smoothingFilterCutoff = MYFLT(6.0); // very conservative
} else
smoothingFilterCutoff = *jUpdateFilterCutoff;
samplesPerDistance = sampleRate / speedOfSound;
audioInterpolator = new LinearInterpolator;
smoothingFilter = NULL;
audioBufferQueue = new std::list<std::vector<MYFLT> *>;
sourcePositionQueue = new std::list<MYFLT>;
currentIndex = 0;
relativeIndex = 0;
return OK;
}
int32_t kontrol(CSOUND *csound) {
MYFLT sourcePosition = *kSourcePosition;
MYFLT micPosition = *kMicPosition;
std::vector<MYFLT> *sourceBuffer = new std::vector<MYFLT>;
sourceBuffer->resize(blockSize);
for (uint32_t inputFrame = 0; inputFrame<(uint32_t)blockSize; inputFrame++) {
(*sourceBuffer)[inputFrame] = audioInput[inputFrame];
}
audioBufferQueue->push_back(sourceBuffer);
sourcePositionQueue->push_back(sourcePosition);
std::vector<MYFLT> *currentBuffer = audioBufferQueue->front();
MYFLT targetPosition = sourcePositionQueue->front() - micPosition;
// The smoothing filter cannot be initialized at i-time,
// because it must be initialized from a k-rate variable.
if (!smoothingFilter) {
smoothingFilter = new RCLowpassFilter();
smoothingFilter->initialize(sampleRate, smoothingFilterCutoff,
targetPosition);
warn(csound, "Doppler::kontrol: sizeof(MYFLT): %10d\n",
sizeof(MYFLT));
warn(csound, "Doppler::kontrol: PI: %10.3f\n", M_PI);
warn(csound, "Doppler::kontrol: this: %10p\n", this);
warn(csound, "Doppler::kontrol: sampleRate: %10.3f\n",
sampleRate);
warn(csound, "Doppler::kontrol: blockSize: %10.3f\n",
blockSize);
warn(csound, "Doppler::kontrol: blockRate: %10.3f\n",
blockRate);
warn(csound, "Doppler::kontrol: speedOfSound: %10.3f\n",
speedOfSound);
warn(csound, "Doppler::kontrol: samplesPerDistance: %10.3f\n",
samplesPerDistance);
warn(csound, "Doppler::kontrol: smoothingFilterCutoff: %10.3f\n",
smoothingFilterCutoff);
warn(csound, "Doppler::kontrol: kMicPosition: %10.3f\n",
*kMicPosition);
warn(csound, "Doppler::kontrol: kSourcePosition: %10.3f\n",
*kSourcePosition);
}
for (size_t outputFrame = 0;
outputFrame < (uint32_t)blockSize;
outputFrame++) {
MYFLT position = smoothingFilter->update(targetPosition);
MYFLT distance = std::fabs(position);
MYFLT sourceTime = relativeIndex - (distance * samplesPerDistance);
int32_t targetIndex = int32_t(sourceTime);
MYFLT fraction = sourceTime - targetIndex;
relativeIndex++;
for (; targetIndex >= currentIndex; currentIndex++) {
if (currentIndex >= blockSize) {
relativeIndex -= blockSize;
currentIndex -= blockSize;
targetIndex -= blockSize;
delete audioBufferQueue->front();
audioBufferQueue->pop_front();
sourcePositionQueue->pop_front();
currentBuffer = audioBufferQueue->front();
targetPosition = sourcePositionQueue->front() - micPosition;
}
audioInterpolator->put((*currentBuffer)[currentIndex]);
}
MYFLT currentSample = audioInterpolator->get(fraction);
audioOutput[outputFrame] = currentSample;
}
return OK;
}
int32_t noteoff(CSOUND *csound) {
IGN(csound);
int32_t result = OK;
if (audioBufferQueue) {
while (!audioBufferQueue->empty()) {
delete audioBufferQueue->front();
audioBufferQueue->pop_front();
}
delete audioBufferQueue;
audioBufferQueue = 0;
}
if (sourcePositionQueue) {
delete sourcePositionQueue;
sourcePositionQueue = 0;
}
if (audioInterpolator) {
delete audioInterpolator;
audioInterpolator = 0;
}
if (smoothingFilter) {
delete smoothingFilter;
smoothingFilter = 0;
}
return result;
}
};
extern "C" {
OENTRY oentries[] = {{
(char *)"doppler", sizeof(Doppler), 0, 3, (char *)"a",
(char *)"akkjj", (SUBR)Doppler::init_,
(SUBR)Doppler::kontrol_,
},
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}};
PUBLIC int32_t csoundModuleInit_doppler(CSOUND *csound) {
int32_t status = 0;
for (OENTRY *oentry = &oentries[0]; oentry->opname; oentry++) {
status |= csound->AppendOpcode(csound, oentry->opname, oentry->dsblksiz,
oentry->flags, oentry->thread,
oentry->outypes, oentry->intypes,
(int32_t (*)(CSOUND *, void *))oentry->iopadr,
(int32_t (*)(CSOUND *, void *))oentry->kopadr,
(int32_t (*)(CSOUND *, void *))oentry->aopadr);
}
return status;
}
#ifndef INIT_STATIC_MODULES
PUBLIC int32_t csoundModuleCreate(CSOUND *csound) {
IGN(csound);
return 0;
}
PUBLIC int32_t csoundModuleInit(CSOUND *csound) {
return csoundModuleInit_doppler(csound);
}
PUBLIC int32_t csoundModuleDestroy(CSOUND *csound) {
IGN(csound);
return 0;
}
#endif
}
|