File: scugens.c

package info (click to toggle)
csound 1%3A6.18.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 63,220 kB
  • sloc: ansic: 192,643; cpp: 14,149; javascript: 9,654; objc: 9,181; python: 3,376; java: 3,337; sh: 1,840; yacc: 1,255; xml: 985; perl: 635; lisp: 411; tcl: 341; lex: 217; makefile: 128
file content (690 lines) | stat: -rw-r--r-- 18,769 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/*

    scugens.c

    Copyright (C) 2017  Eduardo Moguillansky

    This file is part of Csound.

    The Csound Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    Csound is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with Csound; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
    02110-1301 USA
*/

#include <math.h>
#include "emugens_common.h"

#define LOG001 FL(-6.907755278982137)
#define CALCSLOPE(next,prev,nsmps) ((next - prev)/nsmps)

#define SAMPLE_ACCURATE \
    uint32_t n, nsmps = CS_KSMPS;                                    \
    MYFLT *out = p->out;                                             \
    uint32_t offset = p->h.insdshead->ksmps_offset;                  \
    uint32_t early = p->h.insdshead->ksmps_no_end;                   \
    if (UNLIKELY(offset)) memset(out, '\0', offset*sizeof(MYFLT));   \
    if (UNLIKELY(early)) {                                           \
        nsmps -= early;                                              \
        memset(&out[nsmps], '\0', early*sizeof(MYFLT));              \
    }                                                                \

/* #define ZXP(z) (*(z)++) */

#define register_deinit(csound, p, func) \
    csound->RegisterDeinitCallback(csound, p, (int32_t(*)(CSOUND*, void*))(func))

static inline MYFLT
zapgremlins(MYFLT x) {
    MYFLT absx = fabs(x);
    // very small numbers fail the first test, eliminating denormalized numbers
    //    (zero also fails the first test, but that is OK since it returns
    // zero.)
    // very large numbers fail the second test, eliminating infinities
    // Not-a-Numbers fail both tests and are eliminated.
    return (absx > (MYFLT)1e-15 && absx < (MYFLT)1e15) ? x : (MYFLT)0.0;
}

static inline MYFLT
sc_wrap(MYFLT in, MYFLT lo, MYFLT hi) {
    MYFLT range;
    // avoid the divide if possible
    if(in >= hi) {
        range = hi - lo;
        in -= range;
        if (in < hi) return in;
    } else if(in < lo) {
        range = hi - lo;
        in += range;
        if(in >= lo) return in;
    } else return in;

    if (hi == lo) return lo;
    return in - range * FLOOR((in - lo) / range);
}




/*

  lag

  This is essentially the same as OnePole except that instead of
  supplying the coefficient directly, it is calculated from a 60 dB lag time.
  This is the time required for the filter to converge to within 0.01%
  of a value. This is useful for smoothing out control signals.

  ksmooth = lag(kx, klagtime, [initialvalue])
  asmooth = lag(ain, klagtime, [initialvalue])

  NB: if no initialvalue is given, the first value of the input signal
      is used. To reproduce the previous behaviour, use 0 as initialvalue

*/

typedef struct {
    OPDS  h;
    MYFLT *out, *in, *lagtime, *initial_value;
    int started;
    MYFLT lag, b1, y1;
    MYFLT sr;
} LAG0;

static int32_t lag0_init_no_initial_value(CSOUND *csound, LAG0 *p) {
    IGN(csound);
    p->lag = -1;
    p->started = 0;
    p->b1 = FL(0.0);
    p->sr = csound->GetKr(csound);
    p->y1 = 0;
    return OK;
}

static int32_t lag0_init_initial_value(CSOUND *csound, LAG0 *p) {
    IGN(csound);
    p->lag = -1;
    p->started = 1;
    p->y1 = *(p->initial_value);
    p->b1 = FL(0.0);
    p->sr = csound->GetKr(csound);
    return OK;
}


static int32_t lag0k_next(CSOUND *csound, LAG0 *p) {
    IGN(csound);
    MYFLT y1, b1;
    MYFLT y0 = *p->in;

    if(UNLIKELY(em_isinfornan(y0))) {
        return PERFERRF("Non-finite or nan value detected: %f", y0);
    }

    MYFLT lag = *p->lagtime;

    if(LIKELY(p->started))
        y1 = p->y1;
    else {
        p->started = 1;
        y1 = y0;
    }

    if (lag == p->lag) {
        b1 = p->b1;
        p->y1   = y1 = y0 + b1 * (y1 - y0);
        *p->out = y1;
    } else {
        // faust uses tau2pole = exp(-1 / (lag*sr))
        b1 = lag == FL(0.0) ? FL(0.0) : exp(LOG001 / (lag * p->sr));
        *p->out = y0 + b1 * (y1 - y0);
        p->lag = lag;
        p->y1 = y1;
        p->b1 = b1;
    }
    MYFLT out = *(p->out);
    if (UNLIKELY(em_isnan(out))) {
        return PERFERR("Output should not be nan!");
    }
    return OK;
}

static int32_t laga_init_no_initial_value(CSOUND *csound, LAG0 *p) {
    IGN(csound);
    p->lag = -1;
    p->b1 = FL(0.0);
    p->sr = csound->GetSr(csound);
    p->started = 0;
    p->y1 = -INF;
    return OK;
}

static int32_t laga_init_initial_value(CSOUND *csound, LAG0 *p) {
    IGN(csound);
    p->lag = -1;
    p->b1 = FL(1.0);
    p->sr = csound->GetSr(csound);
    p->started = 1;
    p->y1 = *p->initial_value;
    return OK;
}

static int32_t laga_next(CSOUND *csound, LAG0 *p) {
    IGN(csound);

    SAMPLE_ACCURATE

    MYFLT *in = p->in;
    MYFLT lag = *p->lagtime;
    MYFLT y0, y1;
    MYFLT b1 = p->b1;

    if(LIKELY(p->started))
        y1 = p->y1;
    else {
        p->started = 1;
        y1 = in[0];
    }

    if (lag == p->lag) {
        for (n=offset; n<nsmps; n++) {
            y0 = in[n];
            y1 = y0 + b1 * (y1 - y0);
            out[n] = y1;
        }
    } else {
        // faust uses tau2pole = exp(-1 / (lag*sr))
        p->b1 = lag == FL(0.0) ? FL(0.0) : exp(LOG001 / (lag * p->sr));
        MYFLT b1_slope = CALCSLOPE(p->b1, b1, nsmps);
        p->lag = lag;
        for (n=offset; n<nsmps; n++) {
            b1 += b1_slope;
            y0  = in[n];
            y1  = y0 + b1 * (y1 - y0);
            out[n] = y1;
        }
    }
    p->y1 = y1;
    return OK;
}

// ------------------------- LagUD ---------------------------

/*

  klagged lagud ksrc, klagtime_up, klagtime_down [, initialvalue]
  alagged lagud asrc, klagtime_up, klagtime_down [, initialvalue]

  NB: if not initialvalue is given, the first value of the src (ksrc or asrc)
      is used.

*/


typedef struct {
    OPDS h;
    MYFLT *out, *in, *lagtimeU, *lagtimeD, *first;
    MYFLT  lagu, lagd, b1u, b1d, y1;
    MYFLT sr;
    int started;
} LagUD;


static int32_t _lagud_init(CSOUND *csound, LagUD *p, int started) {
    IGN(csound);
    p->lagu = -1;
    p->lagd = -1;
    p->y1 = started ? *p->first : FL(0.0);
    p->b1u = started ? FL(1.0) : FL(0.0);
    p->b1d = p->b1u;
    p->started = started;
    p->sr = csound->GetKr(csound);
    return OK;
}


static int32_t lagud_init_initial_value(CSOUND *csound, LagUD *p) {
    return _lagud_init(csound, p, 1);
}


static int32_t lagud_init_no_initial_value(CSOUND *csound, LagUD *p) {
    return _lagud_init(csound, p, 0);
}


static int
lagud_k(CSOUND *csound, LagUD *p) {
    MYFLT y0  = *p->in;
    MYFLT lagu = *p->lagtimeU;
    MYFLT lagd = *p->lagtimeD;
    MYFLT y1;

    if(UNLIKELY(em_isinfornan(y0))) {
        return PERFERRF("Non-finite value detected: %f", y0);
    }

    if(LIKELY(p->started))
        y1 = p->y1;
    else {
        p->started = 1;
        y1 = y0;
    }

    if ((lagu == p->lagu) && (lagd == p->lagd)) {
        if (y0 > y1)
            p->y1 = y1 = y0 + p->b1u * (y1 - y0);
        else
            p->y1 = y1 = y0 + p->b1d * (y1 - y0);
        *(p->out) = y1;
    } else {
        MYFLT sr = p->sr;
        // faust uses tau2pole = exp(-1 / (lag*sr)), sc uses log(0.01)
        p->b1u  = lagu == FL(0.0) ? FL(0.0) : exp(LOG001 / (lagu * sr));
        p->lagu = lagu;
        p->b1d  = lagd == FL(0.0) ? FL(0.0) : exp(LOG001 / (lagd * sr));
        p->lagd = lagd;
        if (y0 > y1)
            y1 = y0 + p->b1u * (y1 - y0);
        else
            y1 = y0 + p->b1d * (y1 - y0);
        *(p->out) = y1;
    }
    p->y1 = y1;
    return OK;
}


static int32_t
lagud_a(CSOUND *csound, LagUD *p) {
    IGN(csound);

    SAMPLE_ACCURATE

    MYFLT *in  = p->in;
    MYFLT lagu = *p->lagtimeU;
    MYFLT lagd = *p->lagtimeD;
    // MYFLT y1   = p->y1;
    MYFLT y1;
    MYFLT b1u  = p->b1u;
    MYFLT b1d  = p->b1d;

    if (UNLIKELY(offset)) memset(p->out, '\0', offset*sizeof(MYFLT));
    if (UNLIKELY(early))  {
      nsmps -= early;
      memset(&p->out[nsmps], '\0', early*sizeof(MYFLT));
    }
    if(LIKELY(p->started))
        y1 = p->y1;
    else {
        p->started = 1;
        y1 = in[0];
    }


    if ((lagu == p->lagu) && (lagd == p->lagd)) {
        for (n=offset; n<nsmps; n++) {
            MYFLT y0 = in[n];
            if (y0 > y1)
                y1 = y0 + b1u * (y1 - y0);
            else
                y1 = y0 + b1d * (y1 - y0);
            out[n]= y1;
        }
    } else {
        MYFLT sr = csound->GetSr(csound);
        // faust uses tau2pole = exp(-1 / (lag*sr))
        p->b1u = lagu == FL(0.0) ? FL(0.0) : exp(LOG001 / (lagu * sr));
        MYFLT b1u_slope = CALCSLOPE(p->b1u, b1u, nsmps);
        p->lagu = lagu;
        p->b1d  = lagd == FL(0.0) ? FL(0.0) : exp(LOG001 / (lagd * sr));
        MYFLT b1d_slope = CALCSLOPE(p->b1d, b1d, nsmps);
        p->lagd = lagd;
        for (n=offset; n<nsmps; n++) {
            MYFLT y0 = in[n];

            b1u += b1u_slope;
            b1d += b1d_slope;
            if (y0 > y1)
                y1 = y0 + b1u * (y1-y0);
            else
                y1 = y0 + b1d * (y1-y0);
            out[n] = y1;
        }
    }
    p->y1 = zapgremlins(y1);
    return OK;
}



/* ------------------ Trig -------------------------

   Returns 1 for a given duration whenever signal crosses from
     non-positive to positive

   kout    trig kin, kduration
   aout    trig ain, kduration

*/

typedef struct {
    OPDS h;
    MYFLT *out, *in, *dur;
    MYFLT  level, prevtrig;
    long counter;
} Trig;

static int
trig_a(CSOUND *csound, Trig *p) {

    SAMPLE_ACCURATE

    MYFLT *in = p->in;
    MYFLT dur = *p->dur;
    MYFLT sr = csound->GetSr(csound);
    MYFLT prevtrig = p->prevtrig;
    MYFLT level = p->level;
    unsigned long counter = p->counter;

    for(n=offset; n<nsmps; n++) {
        MYFLT curtrig = in[n];
        MYFLT zout;
        if (counter > 0) {
            zout = --counter ? level : FL(0.0);
        } else {
            if (curtrig > FL(0.0) && prevtrig <= FL(0.0)) {
                counter = (long)(dur * sr + FL(0.5));
                if (counter < 1) counter = 1;
                level = curtrig;
                zout  = level;
            } else {
                zout = FL(0.0);
            }
        }
        prevtrig = curtrig;
        out[n]   = zout;
    }
    p->prevtrig = prevtrig;
    p->counter  = counter;
    p->level    = level;
    return OK;
}

static int
trig_k(CSOUND *csound, Trig *p) {
    MYFLT curtrig = *p->in;
    MYFLT dur = *p->dur;
    MYFLT kr = csound->GetKr(csound);
    MYFLT prevtrig = p->prevtrig;
    MYFLT level = p->level;
    uint64_t counter = p->counter;
    if (counter > 0) {
        *p->out = --counter ? level : FL(0.0);
    } else {
        if (curtrig > FL(0.0) && prevtrig <= FL(0.0)) {
            counter = (int64_t)(dur * kr + FL(0.5));
            if (counter < 1)
                counter = 1;
            level   = curtrig;
            *p->out = level;
        } else {
            *p->out = FL(0.0);
        }
    }
    p->prevtrig = curtrig;
    p->counter = counter;
    p->level = level;
    return OK;
}

static int32_t trig_init(CSOUND *csound, Trig *p) {
    p->counter = 0;
    p->prevtrig = FL(0.0);
    p->level = FL(0.0);
    trig_k(csound, p);
    return OK;
}


/*
   Phasor

   kindex   sc_phasor  ktrig, krate, kstart, kend, kresetPos=kstart
   aindex   sc_phasor  ktrig, krate, kstart, kend, kresetPos=kstart
   aindex   sc_phasor  atrig, krate, kstart, kend, kresetPos=kstart
   aindex   sc_phasor  atrig, arate, kstart, kend, kresetPos=kstart

   Phasor is a linear ramp between start and end values. When its trigger
   input crosses from non-positive to positive, Phasor's output will jump
   to its reset position. Upon reaching the end of its ramp Phasor will wrap
   back to its start.

   NOTE: N.B. Since end is defined as the wrap point, its value is never
   actually output.

   NOTE: If one wants Phasor to output a signal with frequency freq
   oscillating between start and end, then the rate should be
   (end - start) * freq / sr where sr is the sampling rate.

   Phasor is commonly used as an index control.

   aindex phasor atrig, xrate, kstart, kend, kresetPos=kstart
   kindex phasor ktrig, krate, kstart, kend, kresetPos=kstart

   trig:     When triggered, jump to resetPos (default: 0, equivalent to start).
   rate:     The amount of change per sample, i.e at a rate of 1 the value
             of each sample will be 1 greater than the preceding sample.
   start:    Start point of the ramp.
   end:      End point of the ramp.
   resetPos: The value to jump to upon receiving a trigger.

*/

typedef struct {
    OPDS h;
    MYFLT *out, *trig, *rate, *start, *end, *resetPos;
    MYFLT level, previn;
} Phasor;

static int32_t phasor_init(CSOUND *csound, Phasor *p) {
    IGN(csound);
    p->previn = 0;
    p->level = 0;
    return OK;
}

static int32_t
phasor_a_aa(CSOUND *csound, Phasor *p) {
    IGN(csound);

    SAMPLE_ACCURATE

    MYFLT *in = p->trig;
    MYFLT *rate = p->rate;
    MYFLT start = *p->start;
    MYFLT end = *p->end;
    MYFLT resetPos = *p->resetPos;
    MYFLT previn = p->previn;
    MYFLT level = p->level;

    for(n=offset; n<nsmps; n++) {
        MYFLT curin = in[n];
        MYFLT zrate = rate[n];
        if (previn <= FL(0.0) && curin > FL(0.0)) {
            MYFLT frac = FL(1) - previn/(curin-previn);
            level = resetPos + frac * zrate;
        }
        out[n] = level;
        level += zrate;
        level = sc_wrap(level, start, end);
        previn = curin;
    }
    p->previn = previn;
    p->level  = level;
    return OK;
}

static int32_t
phasor_a_ak(CSOUND *csound, Phasor *p) {
    IGN(csound);

    SAMPLE_ACCURATE

    MYFLT *in = p->trig;
    MYFLT rate = *p->rate;
    MYFLT start = *p->start;
    MYFLT end = *p->end;
    MYFLT resetPos = *p->resetPos;
    MYFLT previn = p->previn;
    MYFLT level = p->level;

    for(n=offset; n<nsmps; n++) {
        MYFLT curin = in[n];
        if (previn <= FL(0.0) && curin > FL(0.0)) {
            MYFLT frac = FL(1.0) - previn/(curin-previn);
            level = resetPos + frac * rate;
        }
        out[n] = level;
        level += rate;
        level = sc_wrap(level, start, end);
        previn = curin;
    }
    p->previn = previn;
    p->level = level;
    return OK;
}

static int32_t
phasor_a_kk(CSOUND *csound, Phasor *p) {
    IGN(csound);

    SAMPLE_ACCURATE

    MYFLT curin    = *p->trig;
    MYFLT rate     = *p->rate;
    MYFLT start    = *p->start;
    MYFLT end      = *p->end;
    MYFLT resetPos = *p->resetPos;
    MYFLT previn   = p->previn;
    MYFLT level    = p->level;
    int trig = (previn <= FL(0.0)) && (curin > FL(0.0));
    MYFLT frac = FL(1.0) - previn/(curin-previn);

    for(n=offset; n<nsmps; n++) {
        if (trig)
            level = resetPos + frac * rate;
        out[n] = level;
        level += rate;
        level  = sc_wrap(level, start, end);
    }
    p->previn = curin;
    p->level  = level;
    return OK;
}

static int
phasor_k_kk(CSOUND *csound, Phasor *p) {
    IGN(csound);
    MYFLT curin    = *p->trig;
    MYFLT rate     = *p->rate;
    MYFLT start    = *p->start;
    MYFLT end      = *p->end;
    MYFLT resetPos = *p->resetPos;
    MYFLT previn   = p->previn;
    MYFLT level    = p->level;

    if (UNLIKELY(previn <= FL(0.0) && curin > FL(0.0))) {
        level = resetPos;
    }
    level = sc_wrap(level, start, end);
    *p->out = level;
    level += rate;
    p->previn = curin;
    p->level = level;
    return OK;
}

#define S(x)    sizeof(x)

static OENTRY scugens_localops[] = {
    {"sc_lag",    S(LAG0),   0, 3, "k", "kk",
     (SUBR)lag0_init_no_initial_value, (SUBR)lag0k_next},
    {"lag",    S(LAG0),   0, 3, "k", "kk",
     (SUBR)lag0_init_no_initial_value, (SUBR)lag0k_next},

    {"sc_lag",    S(LAG0),   0, 3, "k", "kki",
     (SUBR)lag0_init_initial_value, (SUBR)lag0k_next},
    {"lag",    S(LAG0),   0, 3, "k", "kki",
     (SUBR)lag0_init_initial_value, (SUBR)lag0k_next},

    {"sc_lag",    S(LAG0),    0, 3, "a", "aki",
     (SUBR)laga_init_initial_value, (SUBR)laga_next},
    {"lag",    S(LAG0),    0, 3, "a", "aki",
     (SUBR)laga_init_initial_value, (SUBR)laga_next},

    {"sc_lag",    S(LAG0),    0, 3, "a", "ak",
     (SUBR)laga_init_no_initial_value, (SUBR)laga_next},
    {"lag",    S(LAG0),    0, 3, "a", "ak",
     (SUBR)laga_init_no_initial_value, (SUBR)laga_next},

    {"sc_lagud",  S(LagUD),  0, 3, "k", "kkki",
     (SUBR)lagud_init_initial_value, (SUBR)lagud_k },
    {"lagud",  S(LagUD),  0, 3, "k", "kkki",
     (SUBR)lagud_init_initial_value, (SUBR)lagud_k },

    {"sc_lagud",  S(LagUD),  0, 3, "a", "akki",
     (SUBR)lagud_init_initial_value, (SUBR)lagud_a },
    {"lagud",  S(LagUD),  0, 3, "a", "akki",
     (SUBR)lagud_init_initial_value, (SUBR)lagud_a },

    {"sc_lagud",  S(LagUD),  0, 3, "k", "kkk",
     (SUBR)lagud_init_no_initial_value, (SUBR)lagud_k },
    {"lagud",  S(LagUD),  0, 3, "k", "kkk",
     (SUBR)lagud_init_no_initial_value, (SUBR)lagud_k },

    {"sc_lagud",  S(LagUD),  0, 3, "a", "akk",
     (SUBR)lagud_init_no_initial_value, (SUBR)lagud_a },
    {"lagud",  S(LagUD),  0, 3, "a", "akk",
     (SUBR)lagud_init_no_initial_value, (SUBR)lagud_a },


    {"sc_trig",   S(Trig),   0, 3, "k", "kk",    (SUBR)trig_init, (SUBR)trig_k },
    {"trighold",   S(Trig),   0, 3, "k", "kk",    (SUBR)trig_init, (SUBR)trig_k },

    {"sc_trig",   S(Trig),   0, 3, "a", "ak",    (SUBR)trig_init, (SUBR)trig_a },
    {"trighold",   S(Trig),   0, 3, "a", "ak",    (SUBR)trig_init, (SUBR)trig_a },

    {"sc_phasor", S(Phasor), 0, 3, "k", "kkkkO",
     (SUBR)phasor_init, (SUBR)phasor_k_kk },
    {"trigphasor", S(Phasor), 0, 3, "k", "kkkkO",
     (SUBR)phasor_init, (SUBR)phasor_k_kk },

    {"sc_phasor", S(Phasor), 0, 3, "a", "akkkO",
     (SUBR)phasor_init, (SUBR)phasor_a_ak },
    {"trigphasor", S(Phasor), 0, 3, "a", "akkkO",
     (SUBR)phasor_init, (SUBR)phasor_a_ak },

    {"sc_phasor", S(Phasor), 0, 3, "a", "aakkO",
     (SUBR)phasor_init, (SUBR)phasor_a_aa },
    {"trigphasor", S(Phasor), 0, 3, "a", "aakkO",
     (SUBR)phasor_init, (SUBR)phasor_a_aa },

    {"sc_phasor", S(Phasor), 0, 3, "a", "kkkkO",
     (SUBR)phasor_init, (SUBR)phasor_a_kk },

    {"trigphasor", S(Phasor), 0, 3, "a", "kkkkO",
     (SUBR)phasor_init, (SUBR)phasor_a_kk }
};

LINKAGE_BUILTIN(scugens_localops)