1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/*
fareygen.c:
Copyright (C) 2010 Georg Boenn
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include "csoundCore.h"
#include <math.h>
#define MAX_PFACTOR 16
static const int32_t MAX_PRIMES = 168; /* 168 primes < 1000 */
static const int32_t primes[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337,
347, 349, 353, 359, 367, 373, 379, 383, 389,
397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499,
503, 509, 521, 523, 541, 547, 557, 563, 569,
571, 577, 587, 593, 599, 601, 607, 613, 617,
619, 631, 641, 643, 647, 653, 659, 661, 673,
677, 683, 691, 701, 709, 719, 727, 733, 739,
743, 751, 757, 761, 769, 773, 787, 797, 809,
811, 821, 823, 827, 829, 839, 853, 857, 859,
863, 877, 881, 883, 887, 907, 911, 919, 929,
937, 941, 947, 953, 967, 971, 977, 983, 991,
997};
typedef struct pfactor_ {
int32_t expon;
int32_t base;
} PFACTOR;
typedef struct _rat {
int32_t p;
int32_t q;
} RATIO;
static int32_t EulerPhi (int32_t n);
static int32_t FareyLength (int32_t n);
static int32_t PrimeFactors (int32_t n, PFACTOR p[]);
static void GenerateFarey (int32_t n, RATIO flist[], int32_t size);
static int32_t fareytable (FGDATA *ff, FUNC *ftp)
{
/*
This Gen routine calculates a Farey Sequence F_n of the integer n.
A Farey Sequence F_n of order n is a list of fractions in their lowest
terms between 0 and 1 and in ascending order. Their denominators do not
exceed n.
This means a fraction a/b belongs to F_n if 0 <= a <= b <= n.
In F_n, the numerator and denominator of each fraction is always coprime.
0 and 1 are included in F_n as the fractions 0/1 and 1/1.
For example F_5 = {0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1}
Some properties of the Farey Sequence:
1. If a/b and c/d are two successive terms of F_n, then bc - ad = 1.
2. If a/b, c/d, e/f are three successive terms of F_n, then:
c/d = (a+e) / (b+f)
c/d is called the mediant fraction between a/b and e/f.
3. If n > 1, then no two successive terms of F_n have the same denominator.
The length of any Farey Sequence F_n is determined by
|F_n| = 1 + SUM (phi(m)) FOR m=1, m<=n, m++
where phi(m) is Euler's totient function, which gives the number of
integers <= m that are coprime to m.
References:
Hardy, G.M. and Wright, E.M. (1960), An Introduction to the Theory of
Numbers, Oxford, 4th Edition, Chapter 3, p.23
http://mathworld.wolfram.com/FareySequence.html
http://en.wikipedia.org/wiki/Totient
Implementation Notes:
The size of the array of fractions for any F_n is calculated
with the help Euler's function phi(n), also called totient
function. For its implementation we included an array of prime
numbers and a function to determine the prime factor composition
of a natural integer. The primes dividing the integer are stored
locally in a small array of ints.
Important: The length of the table declared by the user does not
have to be equal to the length of the Farey Sequence. If the
table is smaller, then only a part of the sequence is copied. If
it is longer, then zeros are padded.
*/
int32_t j, fareyseq, nvals, nargs, farey_length, mode;
MYFLT *fp = ftp->ftable, *pp, *pp2;
CSOUND *csound = ff->csound;
RATIO *flist;
nvals = ff->flen;
nargs = ff->e.pcnt - 4;
if (UNLIKELY(nargs < 2)) {
return csound->ftError(ff, Str("insufficient arguments for fareytable"));
}
ff->e.p[4] *= -1;
pp = &(ff->e.p[5]);
fareyseq = (int32_t) *pp;
pp2 = &(ff->e.p[6]);
mode = (int32_t) *pp2;
farey_length = FareyLength(fareyseq);
flist = (RATIO*) csound->Calloc(csound, farey_length*sizeof(RATIO));
if (ff->flen <= 0) return csound->ftError(ff, Str("Illegal table size"));
GenerateFarey (fareyseq, flist, farey_length);
switch (mode) {
default:
case 0: /* output float elements of F_n */
for (j = 0; j < nvals; j++) {
if (j < farey_length)
fp[j] = (MYFLT) flist[j].p / (MYFLT) flist[j].q;
}
break;
case 1: /* output delta values of successive elements of F_n */
{
MYFLT last = FL(0.0);
int32_t i = 1;
for (j = 0; j < nvals; j++, i++) {
if (i < farey_length) {
MYFLT current = (MYFLT) flist[i].p / (MYFLT) flist[i].q;
fp[j] = current - last;
last = current;
}
}
break;
}
case 2: /* output only the denominators of the integer ratios */
for (j = 0; j < nvals; j++) {
if (j < farey_length)
fp[j] = (MYFLT) flist[j].q;
}
break;
case 3: /* output the normalised denominators of the integer ratios */
{
MYFLT farey_scale = (MYFLT) 1 / (MYFLT) fareyseq;
for (j = 0; j < nvals; j++) {
if (j < farey_length)
fp[j] = (MYFLT) flist[j].q * farey_scale;
}
break;
}
case 4: /* output float elements of F_n + 1 for tuning tables*/
for (j = 0; j < nvals; j++) {
if (j < farey_length)
fp[j] = FL(1.0) + (MYFLT) flist[j].p / (MYFLT) flist[j].q;
}
break;
}
csound->Free(csound,flist);
return OK;
}
/* utility functions. See the comments above. */
static int32_t EulerPhi (int32_t n)
{
int32_t i;
PFACTOR p[MAX_PFACTOR];
MYFLT result;
if (n == 1)
return 1;
if (n == 0)
return 0;
memset(p, 0, sizeof(PFACTOR)*MAX_PFACTOR);
/* for (i=0; i < MAX_PFACTOR; i++) { */
/* p[i].expon = 0; */
/* p[i].base = 0; */
/* } */
(void)PrimeFactors (n, p);
result = (MYFLT) n;
for (i = 0; i < MAX_PFACTOR; i++) {
int32_t q = p[i].base;
if (!q)
break;
result *= (FL(1.0) - FL(1.0) / (MYFLT) q);
}
return (int32_t) result;
}
static int32_t FareyLength (int32_t n)
{
int32_t i = 1;
int32_t result = 1;
n++;
for (; i < n; i++)
result += EulerPhi (i);
return result;
}
static int32_t PrimeFactors (int32_t n, PFACTOR p[])
{
int32_t i = 0; int32_t j = 0;
int32_t i_exp = 0;
if (!n)
return j;
while (i < MAX_PRIMES)
{
int32_t aprime = primes[i++];
if (j == MAX_PFACTOR || aprime > n) {
return j;
}
if (n == aprime)
{
p[j].expon = 1;
p[j].base = n;
return (++j);
}
i_exp = 0;
while (!(n % aprime))
{
i_exp++;
n /= aprime;
}
if (i_exp)
{
p[j].expon = i_exp;
p[j].base = aprime;
++j;
}
}
return j;
}
static void GenerateFarey (int32_t n, RATIO flist[], int32_t size) {
int32_t a, b, c, d, k, i;
a = 0; b = 1, c = 1, d = n; i = 1;
flist[0].p = a;
flist[0].q = b;
while (c < n) {
k = (int32_t) ((n + b) / d);
int32_t tempa = a;
int32_t
tempb = b;
a = c; b = d;
c = k * c - tempa;
d = k * d - tempb;
flist[i].p = a;
flist[i].q = b;
if (i < size)
i++;
}
}
static NGFENS farey_fgens[] = {
{ "farey", fareytable },
{ NULL, NULL }
};
FLINKAGE_BUILTIN(farey_fgens)
|