1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
|
/*
filter.c:
Copyright (C) 1997 Michael A. Casey, John ffitch
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
/* filter.c */
/* Author: Michael A. Casey
* Language: C
* Copyright (C) 1997 Michael A. Casey, MIT Media Lab, All Rights Reserved
*
* Implementation of filter opcode for general purpose filtering.
* This opcode implements the following difference equation:
*
* (1)*y(n) = b(0)*x(n) + b(1)*x(n-1) + ... + b(nb)*x(n-nb)
* - a(1)*y(n-1) - ... - a(na)*y(n-na)
*
* whose system function is represented by:
*
* -1 -nb
* jw B(z) b(0) + b(1)z + .... + b(nb)z
* H(e) = ---- = ----------------------------
* -1 -na
* A(z) 1 + a(1)z + .... + a(na)z
*
* The syntax is as follows:
*
* xsig2 xfilter xsig1, nb, na, b(0), b(1), ..., b(nb), a(1), a(2), ..., a(na)
*
* xsig is either a k-rate or a-rate signal and xfilter is
* the corresponding opcode: kfilter or filter respectively.
* b(n) and a(n) are either i or k-rate arguments
* nb and na are i-time arguments with the following limits:
*
* 1 <= nb <= 51
* 0 <= na <= 50
*
* The filter is implemented with a direct form-II digital filter lattice
* which has the advantage of requiring a single Nth-order delay line
* [N = max(na,nb-1)], as well as negating the need for pole-zero
* factorization which is required of type III and IV digital filter
* lattice structures.
*
*
* Examples of digital filtering using filter
* ==========================================
*
* A first-order IIR filter with k-rate gain kG and k-rate pole coefficient
* ka1 has the following syntax:
*
* asig2 filter asig1, 1, 1, kG, ka1
*
* A first-order allpass IIR filter with i-var coefficient c has the
* following syntax:
*
* asig2 filter asig1, 2, 1, -ic, 1, ic
*
* A first-order linear-phase lowpass FIR filter operating on a kvar signal
* has the following syntax:
*
* ksig2 kfilter ksig1, 2, 0, 0.5, 0.5
*
* Potential applications of filter
* ================================
*
* Since filter allows the implementation of generalised recursive filters,
* it can be used to specify a large range of general DSP algorithms- very
* efficiently.
*
* For example, a digital waveguide can be implemented for musical instrument
* modeling using a pair of delayr and delayw opcodes in conjunction with the
* filter opcode.
*
*
* The zfilter opcode
* ==================
*
* Whereas the above two opcodes, filter and kfilter, are static linear
* time-invariant (LTI) filters, zfilter implements two pole-warping
* operations to effect control over the filter at the k-rate. The
* operations are radial pole-shear and angular pole-warp respectively.
*
* Pole shearing increases the magnitude of poles along radial lines in
* the Z-plane. This has the affect of altering filter ring times. The
* variable kmag is the parameters (-1:1)
*
* Pole warping changes the frequency of poles by moving them along angular
* paths in the Z plane. This operation leaves the shape of the magnitude
* response unchanged but alters the frequencies by a constant factor
* (preserving 0 and pi). This alters the resonant frequencies of the filter
* but leaves the "timbre" of the filter intact.
*
* The following example implements a forth-order all-pole model with pole
* shear and warp factors kmag and kfreq and i-time IIR coefficient ia1...ia4.
*
* asig2 zfilter kmag, kfreq, 1, 4, 1, ia1, ia2, ia3, ia4
*
* Notice
* ======
*
* This code is provided as is for the express purpose of enhancing Csound
* with a general-purpose filter routine. No guarantees are made as to its
* effectiveness for a particular application. The author reserves the right
* to withdraw this code from the Csound distribution at any time without
* notice. This code is not to be used for any purposes other than those
* covered by the public Csound license agreement. For any other use,
* including distribution in whole or part, specific prior permission
* must be obtained from MIT.
*
*/
/* Contains modifications by John ffitch, which have no restrictions attached
* Main changes are to work in double precision internally */
#include <stdlib.h>
#include "stdopcod.h"
#include "filter.h"
#include <math.h>
typedef struct FCOMPLEX {double r,i;} fcomplex;
static double readFilter(FILTER*, int32_t);
static void insertFilter(FILTER*,double);
#ifndef MAX
#define MAX(a,b) ((a>b)?(a):(b))
#define MIN(a,b) ((a>b)?(b):(a))
#endif
/*#define POLEISH (1) */ /* 1=poleish pole roots after Laguer root finding */
typedef struct FPOLAR {double mag,ph;} fpolar;
/* Routines associated with pole control */
static void expandPoly(fcomplex[], double[], int32_t);
static void complex2polar(fcomplex[],fpolar[], int32_t);
static void polar2complex(fpolar[],fcomplex[], int32_t);
static void sortRoots(fcomplex roots[], int32_t dim);
static int32_t sortfun(fpolar *a, fpolar *b);
static void nudgeMags(fpolar a[], fcomplex b[], int32_t dim, double fact);
static void nudgePhases(fpolar a[], fcomplex b[], int32_t dim, double fact);
static void zroots(CSOUND*, fcomplex [], int32_t, fcomplex []);
static fcomplex Cadd(fcomplex, fcomplex);
static fcomplex Csub(fcomplex, fcomplex);
static fcomplex Cmul(fcomplex, fcomplex);
static fcomplex Cdiv(fcomplex, fcomplex);
static fcomplex Complex(double, double);
static double Cabs(fcomplex);
static fcomplex Csqrt(fcomplex);
static fcomplex RCmul(double, fcomplex);
/* Filter initialization routine */
static int32_t ifilter(CSOUND *csound, FILTER* p)
{
int32_t i;
/* since i-time arguments are not guaranteed to propegate to p-time
* we must copy the i-vars into the p structure.
*/
p->numa = (int32_t)*p->na;
p->numb = (int32_t)*p->nb;
/* First check bounds on initialization arguments */
if (UNLIKELY((p->numb<1) || (p->numb>(MAXZEROS+1)) ||
(p->numa<0) || (p->numa>MAXPOLES)))
return csound->InitError(csound, Str("Filter order out of bounds: "
"(1 <= nb < 51, 0 <= na <= 50)"));
/* Calculate the total delay in samples and allocate memory for it */
p->ndelay = MAX(p->numb-1,p->numa);
csound->AuxAlloc(csound, p->ndelay * sizeof(double), &p->delay);
/* Initialize the delay line for safety ***NOT NEEDED AS AUXALLOC DOES THAT */
/* for (i=0;i<p->ndelay;i++) */
/* ((double*)p->delay.auxp)[i] = 0.0; */
/* Set current position pointer to beginning of delay */
p->currPos = (double*)p->delay.auxp;
for (i=0; i<p->numb+p->numa; i++)
p->dcoeffs[i] = (double)*p->coeffs[i];
return OK;
}
/* izfilter - initialize z-plane controllable filter */
static int32_t izfilter(CSOUND *csound, ZFILTER *p)
{
fcomplex a[MAXPOLES];
fcomplex *roots;
double *coeffs;
int32_t i, dim;
/* since i-time arguments are not guaranteed to propagate to p-time
* we must copy the i-vars into the p structure.
*/
p->numa = (int32_t)*p->na;
p->numb = (int32_t)*p->nb;
/* First check bounds on initialization arguments */
if (UNLIKELY((p->numb<1) || (p->numb>(MAXZEROS+1)) ||
(p->numa<0) || (p->numa>MAXPOLES)))
return csound->InitError(csound, Str("Filter order out of bounds: "
"(1 <= nb < 51, 0 <= na <= 50)"));
/* Calculate the total delay in samples and allocate memory for it */
p->ndelay = MAX(p->numb-1,p->numa);
csound->AuxAlloc(csound, p->ndelay * sizeof(double), &p->delay);
/* Set current position pointer to beginning of delay */
p->currPos = (double*)p->delay.auxp;
for (i=0; i<p->numb+p->numa; i++)
p->dcoeffs[i] = (double)*p->coeffs[i];
/* Add auxillary root memory */
csound->AuxAlloc(csound, p->numa * sizeof(fcomplex), &p->roots);
roots = (fcomplex*) p->roots.auxp;
dim = p->numa;
coeffs = p->dcoeffs + p->numb;
/* Reverse coefficient order for root finding */
a[dim] = Complex(1.0,0.0);
for (i=dim-1; i>=0; i--)
a[i] = Complex(coeffs[dim-i-1],0.0);
/* NRIC root finding routine, a[0..M] roots[1..M] */
zroots(csound, a, dim, roots-1/*POLEISH*/);
/* Sort roots into descending order of magnitudes */
sortRoots(roots, dim);
return OK;
}
/* a-rate filter routine
*
* Implements the following difference equation
*
* (1)*y(n) = b(0)*x(n) + b(1)*x(n-1) + ... + b(nb)*x(n-nb)
* - a(1)*y(n-1) - ... - a(na)*y(n-na)
*
*/
static int32_t afilter(CSOUND *csound, FILTER* p)
{
IGN(csound);
int32_t i;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
double* a = p->dcoeffs+p->numb;
double* b = p->dcoeffs+1;
double b0 = p->dcoeffs[0];
double poleSamp, zeroSamp, inSamp;
/* Outer loop */
if (UNLIKELY(offset)) memset(p->out, '\0', offset*sizeof(MYFLT));
if (UNLIKELY(early)) {
nsmps -= early;
memset(&p->out[nsmps], '\0', early*sizeof(MYFLT));
}
for (n=offset; n<nsmps; n++) {
inSamp = p->in[n];
poleSamp = inSamp;
zeroSamp = 0.0;
/* Inner filter loop */
for (i=0; i< p->ndelay; i++) {
/* Do poles first */
/* Sum of products of a's and delays */
if (i<p->numa)
poleSamp += -(a[i])*readFilter(p,i+1);
/* Now do the zeros */
if (i<(p->numb-1))
zeroSamp += (b[i])*readFilter(p,i+1);
}
p->out[n] = (MYFLT)((b0)*poleSamp + zeroSamp);
/* update filter delay line */
insertFilter(p, poleSamp);
}
return OK;
}
/* k-rate filter routine
*
* Implements the following difference equation at the k rate
*
* (1)*y(k) = b(0)*x(k) + b(1)*x(k-1) + ... + b(nb)*x(k-nb)
* - a(1)*y(k-1) - ... - a(na)*y(k-na)
*
*/
static int32_t kfilter(CSOUND *csound, FILTER* p)
{
IGN(csound);
int32_t i;
double* a = p->dcoeffs+p->numb;
double* b = p->dcoeffs+1;
double b0 = p->dcoeffs[0];
double poleSamp, zeroSamp, inSamp;
inSamp = *p->in;
poleSamp = inSamp;
zeroSamp = 0.0;
/* Filter loop */
for (i=0; i<p->ndelay; i++) {
/* Do poles first */
/* Sum of products of a's and delays */
if (i<p->numa)
poleSamp += -(a[i])*readFilter(p,i+1);
/* Now do the zeros */
if (i<(p->numb-1))
zeroSamp += (b[i])*readFilter(p,i+1);
}
*p->out = (MYFLT)((b0)*poleSamp + zeroSamp);
/* update filter delay line */
insertFilter(p, poleSamp);
return OK;
}
/* azfilter - a-rate controllable pole filter
*
* This filter allows control over the magnitude
* and frequency response of the filter by efficient
* manipulation of the poles.
*
* The k-rate controls are:
*
* kmag, kfreq
*
* The rest of the filter is the same as filter
*
*/
static int32_t azfilter(CSOUND *csound, ZFILTER* p)
{
IGN(csound);
int32_t i;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
double* a = p->dcoeffs+p->numb;
double* b = p->dcoeffs+1;
double b0 = p->dcoeffs[0];
double poleSamp, zeroSamp, inSamp;
fpolar B[MAXPOLES];
fcomplex C[MAXPOLES+1];
fcomplex *roots = (fcomplex*) p->roots.auxp;
double kmagf = *p->kmagf; /* Mag nudge factor */
double kphsf = *p->kphsf; /* Phs nudge factor */
int32_t dim = p->numa;
/* Nudge pole magnitudes */
complex2polar(roots,B,dim);
nudgeMags(B,roots,dim,kmagf);
nudgePhases(B,roots,dim,kphsf);
polar2complex(B,C,dim);
expandPoly(C,a,dim);
/* C now contains the complex roots of the nudged filter */
/* and a contains their associated real coefficients. */
/* Outer loop */
if (UNLIKELY(offset)) memset(p->out, '\0', offset*sizeof(MYFLT));
if (UNLIKELY(early)) {
nsmps -= early;
memset(&p->out[nsmps], '\0', early*sizeof(MYFLT));
}
for (n=offset; n<nsmps; n++) {
inSamp = p->in[n];
poleSamp = inSamp;
zeroSamp = 0.0;
/* Inner filter loop */
for (i=0; i< p->ndelay; i++) {
/* Do poles first */
/* Sum of products of a's and delays */
if (i<p->numa)
poleSamp += -(a[i])*readFilter((FILTER*)p,i+1);
/* Now do the zeros */
if (i<(p->numb-1))
zeroSamp += (b[i])*readFilter((FILTER*)p,i+1);
}
p->out[n] = (MYFLT)((b0)*poleSamp + zeroSamp);
/* update filter delay line */
insertFilter((FILTER*)p, poleSamp);
}
return OK;
}
/* readFilter -- delay-line access routine
*
* Reads sample x[n-i] from a previously established delay line.
* With this syntax i is +ve for a time delay and -ve for a time advance.
*
* The use of explicit indexing rather than implicit index incrementing
* allows multiple lattice structures to access the same delay line.
*
*/
static double readFilter(FILTER* p, int32_t i)
{
double* readPoint; /* Generic pointer address */
/* Calculate the address of the index for this read */
readPoint = p->currPos - i;
/* Wrap around for time-delay if necessary */
if (readPoint < ((double*)p->delay.auxp) )
readPoint += p->ndelay;
else
/* Wrap for time-advance if necessary */
if (readPoint > ((double*)p->delay.auxp + (p->ndelay-1)) )
readPoint -= p->ndelay;
return *readPoint; /* Dereference read address for delayed value */
}
/* insertFilter -- delay-line update routine
*
* Inserts the passed value into the currPos and increments the
* currPos pointer modulo the length of the delay line.
*
*/
static void insertFilter(FILTER* p, double val)
{
/* Insert the passed value into the delay line */
*p->currPos = val;
/* Update the currPos pointer and wrap modulo the delay length */
if (((double*) (++p->currPos)) >
((double*)p->delay.auxp + (p->ndelay-1)) )
p->currPos -= p->ndelay;
}
/* Compute polynomial coefficients from the roots */
/* The expanded polynomial is computed as a[0..N] in
* descending powers of Z
*/
static void expandPoly(fcomplex roots[], double a[], int32_t dim)
{
int32_t j,k;
fcomplex z[MAXPOLES],d[MAXPOLES];
z[0] = Complex(1.0, 0.0);
for (j=1;j<=dim;j++)
z[j] = Complex(0.0,0.0);
/* Recursive coefficient expansion about the roots of A(Z) */
for (j=0;j<dim;j++) {
for (k=0;k<dim;k++)
d[k]=z[k]; /* Store last vector of coefficients */
for (k=1;k<=j+1;k++)
z[k] = Csub(z[k],Cmul(roots[j], d[k-1]));
}
for (j=0;j<dim;j++)
(a[j]) = z[j+1].r;
}
#define SQR(a) (a*a)
static void complex2polar(fcomplex a[], fpolar b[], int32_t N)
{
int32_t i;
for (i=0; i<N; i++) {
b[i].mag = hypot(a[i].r,a[i].i);
b[i].ph = atan2(a[i].i,a[i].r);
}
}
static void polar2complex(fpolar a[], fcomplex b[],int32_t N)
{
int32_t i;
for (i=0;i<N;i++) {
b[i].r = a[i].mag*cos(a[i].ph);
b[i].i = a[i].mag*sin(a[i].ph);
}
}
/* Sort poles in decreasing order of magnitudes */
static void sortRoots(fcomplex roots[], int32_t dim)
{
fpolar plr[MAXPOLES];
/* Convert roots to polar form */
complex2polar(roots, plr, dim);
/* Sort by their magnitudes */
qsort(plr, dim, sizeof(fpolar),
(int32_t(*)(const void *, const void * ))sortfun);
/* Convert back to complex form */
polar2complex(plr,roots,dim);
}
/* Comparison function for sorting in DECREASING order */
static int32_t sortfun(fpolar *a, fpolar *b)
{
if (a->mag<b->mag)
return 1;
else if (a->mag==b->mag)
return 0;
else
return -1;
}
/* nudgeMags - Pole magnitude nudging routine
*
* Find the largest-magnitude pole off the real axis
* and nudge all non-real poles by a factor of the distance
* of the largest pole to the unit circle (or zero if fact is -ve).
*
* This has the effect of changing the time-response of the filter
* without affecting the overall frequency response characteristic.
*
*/
static void nudgeMags(fpolar a[], fcomplex b[], int32_t dim, double fact)
{
double eps = .000001; /* To avoid underflow comparisons */
double nudgefact;
int32_t i;
/* Check range of nudge factor */
if (fact>0 && fact<=1) {
/* The largest magnitude pole will be at the beginning of
* the array since it was previously sorted by the init routine.
*/
for (i=0;i<dim;i++)
if (fabs(b[i].i)>eps) /* Check if pole is complex */
break;
nudgefact = 1 + (1/a[i].mag-1)*fact;
/* Nudge all complex-pole magnitudes by this factor */
for (i=dim-1;i>=0;i--)
if (fabs(b[i].i)>eps)
a[i].mag *= nudgefact;
}
else if (fact < 0 && fact >=-1) {
nudgefact = (fact + 1);
/* Nudge all complex-pole magnitudes by this factor */
for (i=dim-1;i>=0;i--)
if (fabs(b[i].i)>eps)
a[i].mag *= nudgefact;
}
else {
/* Factor is out of range, do nothing */
}
}
/* nudgePhases - Pole phase nudging routine
*
* Multiply phases of all poles by factor
*/
static void nudgePhases(fpolar a[], fcomplex b[], int32_t dim, double fact)
{
double eps = .000001; /* To avoid underflow comparisons */
double nudgefact;
int32_t i;
double phmax=0.0;
/* Check range of nudge factor */
if (fact>0 && fact<=1) {
/* Find the largest angled non-real pole */
for (i=0;i<dim;i++)
if (a[i].ph>phmax)
phmax = a[i].ph;
phmax /= PI; /* Normalize to radian frequency */
nudgefact = 1 + (1-phmax)*fact;
/* Nudge all complex-pole magnitudes by this factor */
for (i=dim-1;i>=0;i--)
if (fabs(b[i].i)>eps)
a[i].ph *= nudgefact;
}
else if (fact < 0 && fact >=-1) {
nudgefact = (fact + 1);
/* Nudge all complex-pole magnitudes by this factor */
for (i=dim-1;i>=0;i--)
if (fabs(b[i].i)>eps)
a[i].ph *= nudgefact;
}
else {
/* Factor is out of range, do nothing */
}
}
/* ------------------------------------------------------------ */
/* Code from Press, Teukolsky, Vettering and Flannery
* Numerical Recipes in C, 2nd Edition, Cambridge 1992.
*/
#define EPSS (1.0e-7)
#define MR (8)
#define MT (10)
#define MAXIT (MT*MR)
/* Simple definition is sufficient */
#define FPMAX(a,b) (a>b ? a : b)
static void laguer(CSOUND *csound, fcomplex a[], int32_t m,
fcomplex *x, int32_t *its)
{
int32_t iter,j;
double abx,abp,abm,err;
fcomplex dx,x1,b,d,f,g,h,sq,gp,gm,g2;
static const double frac[MR+1] = {0.0,0.5,0.25,0.75,0.13,0.38,0.62,0.88,1.0};
for (iter=1; iter<=MAXIT; iter++) {
*its = iter;
b = a[m];
err = Cabs(b);
d = f = Complex(0.0,0.0);
abx = Cabs(*x);
for (j=m-1; j>=0; j--) {
f = Cadd(Cmul(*x,f),d);
d = Cadd(Cmul(*x,d),b);
b = Cadd(Cmul(*x,b),a[j]);
err = Cabs(b)+abx*err;
}
err *= (double)EPSS;
if (Cabs(b) <= err) return;
g = Cdiv(d,b);
g2 = Cmul(g,g);
h = Csub(g2,RCmul(2.0,Cdiv(f,b)));
sq = Csqrt(RCmul((double) (m-1),Csub(RCmul((double) m,h),g2)));
gp = Cadd(g,sq);
gm = Csub(g,sq);
abp = Cabs(gp);
abm = Cabs(gm);
if (abp < abm) gp = gm;
dx = ((FPMAX(abp,abm) > 0.0 ? Cdiv(Complex((double) m,0.0),gp)
: RCmul(exp(log(1.0+abx)),
Complex(cos((double)iter),
sin((double)iter)))));
x1 = Csub(*x,dx);
if (x->r == x1.r && x->i == x1.i) return;
if (iter % MT) *x = x1;
else *x = Csub(*x,RCmul(frac[iter/MT],dx));
}
csound->Warning(csound, Str("too many iterations in laguer"));
return;
}
#undef EPSS
#undef MR
#undef MT
#undef MAXIT
/* (C) Copr. 1986-92 Numerical Recipes Software *%&&"U^3. */
/* ------------------------------------------------------------ */
/* Code from Press, Teukolsky, Vettering and Flannery
* Numerical Recipes in C, 2nd Edition, Cambridge 1992.
*/
#define EPS (2.0e-6)
#define MAXM (100)
static void zroots(CSOUND *csound,fcomplex a[], int32_t m, fcomplex roots[])
{
int32_t i,its,j,jj;
fcomplex x,b,c,ad[MAXM];
for (j=0; j<=m; j++) ad[j] = a[j];
for (j=m; j>=1; j--) {
x = Complex(0.0,0.0);
laguer(csound,ad,j,&x,&its);
if (fabs(x.i) <= 2.0*EPS*fabs(x.r)) x.i = 0.0;
roots[j] = x;
b = ad[j];
for (jj=j-1; jj>=0; jj--) {
c = ad[jj];
ad[jj] = b;
b = Cadd(Cmul(x,b),c);
}
}
/* if (poleish) */
for (j=1; j<=m; j++)
laguer(csound,a,m,&roots[j],&its);
for (j=2; j<=m; j++) {
x = roots[j];
for (i=j-1; i>=1; i--) {
if (roots[i].r <= x.r) break;
roots[i+1] = roots[i];
}
roots[i+1] = x;
}
}
#undef EPS
#undef MAXM
/* (C) Copr. 1986-92 Numerical Recipes Software *%&&"U^3. */
/* Code from Press, Teukolsky, Vettering and Flannery
* Numerical Recipes in C, 2nd Edition, Cambridge 1992.
*/
static fcomplex Cadd(fcomplex a, fcomplex b)
{
fcomplex c;
c.r = a.r+b.r;
c.i = a.i+b.i;
return c;
}
static fcomplex Csub(fcomplex a, fcomplex b)
{
fcomplex c;
c.r = a.r-b.r;
c.i = a.i-b.i;
return c;
}
static fcomplex Cmul(fcomplex a, fcomplex b)
{
fcomplex c;
c.r = a.r*b.r-a.i*b.i;
c.i = a.i*b.r+a.r*b.i;
return c;
}
static fcomplex Complex(double re, double im)
{
fcomplex c;
c.r = re;
c.i = im;
return c;
}
/* fcomplex Conjg(fcomplex z) */
/* { */
/* fcomplex c; */
/* c.r = z.r; */
/* c.i = -z.i; */
/* return c; */
/* } */
static fcomplex Cdiv(fcomplex a, fcomplex b)
{
fcomplex c;
double r,den;
if (fabs(b.r) >= fabs(b.i)) {
r = b.i/b.r;
den = b.r+r*b.i;
c.r = (a.r+r*a.i)/den;
c.i = (a.i-r*a.r)/den;
}
else {
r = b.r/b.i;
den = b.i+r*b.r;
c.r = (a.r*r+a.i)/den;
c.i = (a.i*r-a.r)/den;
}
return c;
}
static double Cabs(fcomplex z)
{
double x,y,ans;
double temp;
x = fabs(z.r);
y = fabs(z.i);
if (x == 0.0)
ans = y;
else if (y == 0.0)
ans = x;
else if (x > y) {
temp = (y/x);
ans = x*sqrt(1.0+temp*temp);
}
else {
temp = (x/y);
ans = y*sqrt(1.0+temp*temp);
}
return ans;
}
static fcomplex Csqrt(fcomplex z)
{
fcomplex c;
double w;
double x,y,r;
if ((z.r == 0.0) && (z.i == 0.0)) {
c.r = 0.0;
c.i = 0.0;
return c;
}
else {
x = fabs(z.r);
y = fabs(z.i);
if (x >= y) {
r = y/x;
w = sqrt(x)*sqrt(0.5*(1.0+sqrt(1.0+r*r)));
}
else {
r = x/y;
w = sqrt(y)*sqrt(0.5*(r+sqrt(1.0+r*r)));
}
if (z.r >= 0.0) {
c.r = w;
c.i = z.i/(2.0*w);
} else {
c.i = (z.i >= 0.0) ? w : -w;
c.r = z.i/(2.0*c.i);
}
return c;
}
}
static fcomplex RCmul(double x, fcomplex a)
{
fcomplex c;
c.r = x*a.r;
c.i = x*a.i;
return c;
}
#define S(x) sizeof(x)
static OENTRY localops[] = {
{ "filter2",0xffff, },
{ "filter2.a", S(FILTER), 0, 3, "a", "aiim", (SUBR)ifilter, (SUBR)afilter},
{ "filter2.k", S(FILTER), 0, 3, "k", "kiim", (SUBR)ifilter, (SUBR)kfilter,NULL },
{ "zfilter2", S(ZFILTER), 0, 3, "a", "akkiim", (SUBR)izfilter, (SUBR)azfilter}
};
int32_t filter_init_(CSOUND *csound)
{
return csound->AppendOpcodes(csound, &(localops[0]),
(int32_t
) (sizeof(localops) / sizeof(OENTRY)));
}
|