1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
/*
liveconv.c:
Copyright (C) 2017 Sigurd Saue, Oeyvind Brandtsegg
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
/* The implementation is indebted to the ftconv opcode by Istvan Varga 2005 */
#include "csoundCore.h"
#include "interlocks.h"
#include <math.h>
/*
** Data structures holding the load/unload information
*/
typedef struct {
enum { NO_LOAD, LOADING, UNLOADING } status;
int32_t pos;
} load_t;
typedef struct {
load_t *begin;
load_t *end;
load_t *head;
int32_t available;
} rbload_t;
static inline
void init_load(rbload_t *buffer, int32_t size)
{
load_t* iter = buffer->begin;
buffer->head = buffer->begin;
buffer->end = buffer->begin + size;
buffer->available = 1;
for (iter = buffer->begin; iter != buffer->end; iter++) {
iter->status = NO_LOAD;
iter->pos = 0;
}
}
static inline
load_t* next_load(const rbload_t *buffer, load_t* const now)
{
load_t *temp = now + 1;
if (UNLIKELY(temp == buffer->end)) {
temp = buffer->begin;
}
return temp;
}
static inline
load_t* previous_load(const rbload_t *buffer, load_t* const now)
{
return (now == buffer->begin) ? (buffer->end - 1) : (now - 1);
}
/*
** liveconv - data structure holding the internal state
*/
typedef struct {
/*
** Input parameters given by user
*/
OPDS h;
MYFLT *aOut; // output buffer
MYFLT *aIn; // input buffer
MYFLT *iFTNum; // impulse respons table
MYFLT *iPartLen; // length of impulse response partitions
// (latency <-> CPU usage)
MYFLT *kUpdate; // Control variable for updating the IR buffer
// (+1 is start load, -1 is start unload)
MYFLT *kClear; // Clear output buffers
/*
** Internal state of opcode maintained outside
*/
int32_t initDone; /* flag to indicate initialization */
int32_t cnt; /* buffer position, 0 to partSize - 1 */
int32_t nPartitions; /* number of convolve partitions */
int32_t partSize; /* partition length in sample frames
(= iPartLen as integer) */
int32_t rbCnt; /* ring buffer index, 0 to nPartitions - 1 */
/* The following pointer point into the auxData buffer */
MYFLT *tmpBuf; /* temporary buffer for accumulating FFTs */
MYFLT *ringBuf; /* ring buffer of FFTs of input partitions -
these buffers are now computed during init */
MYFLT *IR_Data; /* impulse responses (scaled) */
MYFLT *outBuf; /* output buffer (size=partSize*2) */
rbload_t loader; /* Bookkeeping of load/unload operations */
void *fwdsetup, *invsetup;
AUXCH auxData; /* Aux data buffer allocated in init pass */
} liveconv_t;
/*
** Function to multiply the FFT buffers
** outBuf - the output of the operation (called with tmpBuf), single channel only
** ringBuf - the partitions of the single input signal
** IR_data - the impulse response of a particular channel
** partSize - size of partition
** nPartitions - number of partitions
** ringBuf_startPos - the starting position of the ring buffer
** (corresponds to the start of the partition after the
** last filled partition)
*/
static void multiply_fft_buffers(MYFLT *outBuf, MYFLT *ringBuf, MYFLT *IR_Data,
int32_t partSize, int nPartitions,
int32_t ringBuf_startPos)
{
MYFLT re, im, re1, re2, im1, im2;
MYFLT *rbPtr, *irPtr, *outBufPtr, *outBufEndPm2, *rbEndP;
/* note: partSize must be at least 2 samples */
partSize <<= 1; /* locale partsize is twice the size of the partition size */
/* Finding the index of the last sample pair in the output buffer */
outBufEndPm2 = (MYFLT*) outBuf + (int32_t) (partSize - 2);
/* The end of the ring buffer */
rbEndP = (MYFLT*) ringBuf + (int32_t) (partSize * nPartitions);
rbPtr = &(ringBuf[ringBuf_startPos]); /* Initialize ring buffer pointer */
irPtr = IR_Data; /* Initialize impulse data pointer */
outBufPtr = outBuf; /* Initialize output buffer pointer */
/* clear output buffer to zero */
memset(outBuf, 0, sizeof(MYFLT)*partSize);
/*
** Multiply FFTs for each partition and mix to output buffer
** Note: IRs are stored in reverse partition order
*/
do {
/* wrap ring buffer position */
if (rbPtr >= rbEndP)
rbPtr = ringBuf;
outBufPtr = outBuf;
*(outBufPtr++) +=
*(rbPtr++) * *(irPtr++); /* convolve DC - real part only */
*(outBufPtr++) +=
*(rbPtr++) * *(irPtr++); /* convolve Nyquist - real part only */
re1 = *(rbPtr++);
im1 = *(rbPtr++);
re2 = *(irPtr++);
im2 = *(irPtr++);
/*
** Status:
** outBuf + 2, ringBuf + 4, irBuf + 4
** re = buf + 2, im = buf + 3
*/
re = re1 * re2 - im1 * im2;
im = re1 * im2 + re2 * im1;
while (outBufPtr < outBufEndPm2) {
/* complex multiply */
re1 = rbPtr[0];
im1 = rbPtr[1];
re2 = irPtr[0];
im2 = irPtr[1];
outBufPtr[0] += re;
outBufPtr[1] += im;
re = re1 * re2 - im1 * im2;
im = re1 * im2 + re2 * im1;
re1 = rbPtr[2];
im1 = rbPtr[3];
re2 = irPtr[2];
im2 = irPtr[3];
outBufPtr[2] += re;
outBufPtr[3] += im;
re = re1 * re2 - im1 * im2;
im = re1 * im2 + re2 * im1;
outBufPtr += 4;
rbPtr += 4;
irPtr += 4;
/*
** Status:
** outBuf + 2 + 4n, ringBuf + 4 + 4n, irBuf + 4 + 4n
** re = buf + 2 + 4n, im = buf + 3 + 4n
*/
}
outBufPtr[0] += re;
outBufPtr[1] += im;
} while (--nPartitions);
}
static inline int32_t buf_bytes_alloc(int32_t partSize, int32_t nPartitions)
{
int32_t nSmps;
nSmps = (partSize << 1); /* tmpBuf */
nSmps += ((partSize << 1) * nPartitions); /* ringBuf */
nSmps += ((partSize << 1) * nPartitions); /* IR_Data */
nSmps += ((partSize << 1)); /* outBuf */
nSmps *= (int32_t) sizeof(MYFLT); /* Buffer type MYFLT */
nSmps += (nPartitions+1) * (int32_t) sizeof(load_t);/* Load/unload structure */
/* One load/unload pr. partitions and an extra for buffering is sufficient */
return nSmps;
}
static void set_buf_pointers(liveconv_t *p, int32_t partSize, int32_t nPartitions)
{
MYFLT *ptr;
ptr = (MYFLT*) (p->auxData.auxp);
p->tmpBuf = ptr;
ptr += (partSize << 1);
p->ringBuf = ptr;
ptr += ((partSize << 1) * nPartitions);
p->IR_Data = ptr;
ptr += ((partSize << 1) * nPartitions);
p->outBuf = ptr;
ptr += (partSize << 1);
p->loader.begin = (load_t*) ptr;
}
static int32_t liveconv_init(CSOUND *csound, liveconv_t *p)
{
FUNC *ftp; // function table
int32_t n, nBytes;
/* set p->partSize to the initial partition length, iPartLen */
p->partSize = MYFLT2LRND(*(p->iPartLen));
if (UNLIKELY(p->partSize < 4 || (p->partSize & (p->partSize - 1)) != 0)) {
// Must be a power of 2 at least as large as 4
return csound->InitError(csound, "%s",
Str("liveconv: invalid impulse response "
"partition length"));
}
/* Find and assign the function table numbered iFTNum */
ftp = csound->FTnp2Finde(csound, p->iFTNum);
if (UNLIKELY(ftp == NULL))
return NOTOK; /* ftfind should already have printed the error message */
/* Calculate the total length */
n = (int32_t) ftp->flen;
if (UNLIKELY(n <= 0)) {
return csound->InitError(csound, "%s",
Str("liveconv: invalid length, or insufficient"
" IR data for convolution"));
}
// Compute the number of partitions (total length / partition size)
p->nPartitions = (n + (p->partSize - 1)) / p->partSize;
/*
** Calculate the amount of aux space to allocate (in bytes) and
** allocate if necessary
** Function of partition size and number of partitions
*/
nBytes = buf_bytes_alloc(p->partSize, p->nPartitions);
if (nBytes != (int32_t) p->auxData.size)
csound->AuxAlloc(csound, (int32) nBytes, &(p->auxData));
/*
** From here on is initialization of data
*/
/* initialize buffer pointers */
set_buf_pointers(p, p->partSize, p->nPartitions);
/* Initialize load bookkeeping */
init_load(&p->loader, (p->nPartitions + 1));
/* clear ring buffer to zero */
n = (p->partSize << 1) * p->nPartitions;
memset(p->ringBuf, 0, n*sizeof(MYFLT));
/* initialize buffer indices */
p->cnt = 0;
p->rbCnt = 0;
p->fwdsetup = csound->RealFFT2Setup(csound, (p->partSize << 1), FFT_FWD);
p->invsetup = csound->RealFFT2Setup(csound, (p->partSize << 1), FFT_INV);
/* clear IR buffer to zero */
memset(p->IR_Data, 0, n*sizeof(MYFLT));
/* clear output buffers to zero */
memset(p->outBuf, 0, (p->partSize << 1)*sizeof(MYFLT));
/*
** After initialization:
** Buffer indexes are zero
** tmpBuf is filled with rubish
** ringBuf and outBuf are filled with zero
** IR_Data buffers are filled with zero
*/
p->initDone = 1;
return OK;
}
static int32_t liveconv_perf(CSOUND *csound, liveconv_t *p)
{
MYFLT *x, *rBuf;
FUNC *ftp; // function table
int32_t i, k, n, nSamples, rBufPos, updateIR, clearBuf, nPart, cnt;
load_t *load_ptr;
// uint32_t numLoad = p->nPartitions + 1;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t nn, nsmps = CS_KSMPS;
/* Only continue if initialized */
if (UNLIKELY(p->initDone <= 0)) goto err1;
ftp = csound->FTnp2Finde(csound, p->iFTNum);
nSamples = p->partSize; /* Length of partition */
/* Pointer to a partition of the ring buffer */
rBuf = &(p->ringBuf[p->rbCnt * (nSamples << 1)]);
if (UNLIKELY(offset))
memset(p->aOut, '\0', offset*sizeof(MYFLT));
if (UNLIKELY(early)) {
nsmps -= early;
memset(&p->aOut[nsmps], '\0', early*sizeof(MYFLT));
}
/* If clear flag is set: empty buffers and reset indexes */
clearBuf = MYFLT2LRND(*(p->kClear));
if (clearBuf) {
/* clear ring buffer to zero */
n = (nSamples << 1) * p->nPartitions;
memset(p->ringBuf, 0, n*sizeof(MYFLT));
/* initialize buffer index */
p->cnt = 0;
p->rbCnt = 0;
/* clear output buffers to zero */
memset(p->outBuf, 0, (nSamples << 1)*sizeof(MYFLT));
}
/*
** How to handle the kUpdate input:
** -1: Gradually clear the IR buffer
** 0: Do nothing
** 1: Gradually load the IR buffer
*/
if (p->loader.available) {
// The buffer before the head position is the temporary buffer
load_ptr = previous_load(&p->loader, p->loader.head);
updateIR = MYFLT2LRND(*(p->kUpdate));
if (updateIR == 1) {
load_ptr->status = LOADING;
load_ptr->pos = 0;
}
else if (updateIR == -1) {
load_ptr->status = UNLOADING;
load_ptr->pos = 0;
}
if (load_ptr->status != NO_LOAD) {
p->loader.available = 0;
/* Special case: At a partition border: Make the temporary buffer
head position */
if (p->cnt == 0)
p->loader.head = load_ptr;
}
}
/* For each sample in the audio input buffer (length = ksmps) */
for (nn = offset; nn < nsmps; nn++) {
/* store input signal in buffer */
rBuf[p->cnt] = p->aIn[nn];
/* copy output signals from buffer (contains data from previous
convolution pass) */
p->aOut[nn] = p->outBuf[p->cnt];
/* is input buffer full ? */
if (++p->cnt < nSamples)
continue; /* no, continue with next sample */
/* Check if there are any IR partitions to load/unload */
load_ptr = p->loader.head;
while (load_ptr->status != NO_LOAD) {
cnt = load_ptr->pos;
if (load_ptr->status == LOADING) {
nPart = cnt / nSamples + 1;
/* IR write position, starting with the last! */
n = (nSamples << 1) * (p->nPartitions - nPart);
/* Iterate over IR partitions in reverse order */
for (k = 0; k < nSamples; k++) {
/* Fill IR_Data with scaled IR data, or zero if outside the IR buffer */
p->IR_Data[n + k] =
(cnt < (int32_t)ftp->flen) ? ftp->ftable[cnt] : FL(0.0);
cnt++;
}
/* pad second half of IR to zero */
for (k = nSamples; k < (nSamples << 1); k++)
p->IR_Data[n + k] = FL(0.0);
/* calculate FFT (replace in the same buffer) */
csound->RealFFT2(csound, p->fwdsetup, &(p->IR_Data[n]));
}
else if (load_ptr->status == UNLOADING) {
nPart = cnt / nSamples + 1;
/* IR write position, starting with the last! */
n = (nSamples << 1) * (p->nPartitions - nPart);
memset(p->IR_Data + n, 0, (nSamples << 1)*sizeof(MYFLT));
}
// Update load buffer and move to the next buffer
load_ptr->pos += nSamples;
if (load_ptr->pos >= p->nPartitions * nSamples) {
load_ptr->status = NO_LOAD;
}
load_ptr = next_load(&p->loader, load_ptr);
}
p->loader.available = 1;
// Check if there is a temporary buffer ready to get loaded with the
// next partition
load_ptr = previous_load(&p->loader, p->loader.head);
if (load_ptr->status != NO_LOAD)
p->loader.head = load_ptr;
/* Now the partition is filled with input --> start calculate the
convolution */
p->cnt = 0; /* reset buffer position */
/* pad input in ring buffer with zeros to double length */
for (i = nSamples; i < (nSamples << 1); i++)
rBuf[i] = FL(0.0);
/* calculate FFT of input */
csound->RealFFT2(csound, p->fwdsetup, rBuf);
/* update ring buffer position */
p->rbCnt++;
if (p->rbCnt >= p->nPartitions)
p->rbCnt = 0;
rBufPos = p->rbCnt * (nSamples << 1);
/* Move to next partition in ring buffer (used in next iteration to
store the next input sample) */
rBuf = &(p->ringBuf[rBufPos]);
/* multiply complex arrays --> multiplication in the frequency domain */
multiply_fft_buffers(p->tmpBuf, p->ringBuf, p->IR_Data,
nSamples, p->nPartitions, rBufPos);
/* inverse FFT */
csound->RealFFT2(csound, p->invsetup, p->tmpBuf);
/*
** Copy IFFT result to output buffer
** The second half is left as "tail" for next iteration
** The first half is overlapped with "tail" of previous block
*/
x = &(p->outBuf[0]);
for (i = 0; i < nSamples; i++) {
x[i] = p->tmpBuf[i] + x[i + nSamples];
x[i + nSamples] = p->tmpBuf[i + nSamples];
}
}
return OK;
err1:
return csound->PerfError(csound, &(p->h),
"%s", Str("liveconv: not initialised"));
}
/* module interface functions */
static OENTRY liveconv_localops[] = {
{
"liveconv", // name of opcode
sizeof(liveconv_t), // data size of state block
TR, 3, // thread
"a", // output arguments
"aiikk", // input arguments
(SUBR) liveconv_init, // init function
(SUBR) liveconv_perf // a-rate function
}
};
LINKAGE_BUILTIN(liveconv_localops)
|