File: modmatrix.c

package info (click to toggle)
csound 1%3A6.18.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 63,220 kB
  • sloc: ansic: 192,643; cpp: 14,149; javascript: 9,654; objc: 9,181; python: 3,376; java: 3,337; sh: 1,840; yacc: 1,255; xml: 985; perl: 635; lisp: 411; tcl: 341; lex: 217; makefile: 128
file content (261 lines) | stat: -rw-r--r-- 8,831 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
Modmatrix - modulation matrix
Copyright (C) 2009 Øyvind Brandtsegg, Thom Johansen

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include "modmatrix.h"

#define INITERROR(x) csound->InitError(csound, Str("modmatrix: " x))

#if defined(__SSE2__)
#include <emmintrin.h>
#elif defined(__SSE__)
#include <xmmintrin.h>
#endif

static int32_t modmatrix_init(CSOUND *csound, MODMATRIX *m)
{
    uint32_t size;

    m->restab = csound->FTnp2Find(csound, m->ires);
    m->modtab = csound->FTnp2Find(csound, m->imod);
    m->parmtab = csound->FTnp2Find(csound, m->iparm);
    m->mattab = csound->FTnp2Find(csound, m->imatrix);
    if (UNLIKELY(!m->restab))
        return INITERROR("unable to load result table");
    if (UNLIKELY(!m->modtab))
        return INITERROR("unable to load modulator table");
    if (UNLIKELY(!m->parmtab))
        return INITERROR("unable to load parameter value table");
    if (UNLIKELY(!m->mattab))
        return INITERROR("unable to load routing matrix table");

    m->nummod = (int32_t)*m->inummod;
    m->numparm = (int32_t)*m->inumparm;
    if (UNLIKELY(m->nummod <= 0))
        return INITERROR("number of modulators must be a positive integer");
    if (UNLIKELY(m->numparm <= 0))
        return INITERROR("number of parameters must be a positive integer");

    /* Malloc one big chunk instead of several small ones, we need (worst case):
       MYFLTs - nummod*numparm, nummod, numparm
       ints - nummod, numparm */
    size =  (m->nummod*m->numparm + m->nummod + m->numparm)*sizeof(MYFLT) +
            (m->nummod + m->numparm)*sizeof(int32_t);
    if (m->aux.auxp == NULL || m->aux.size < size)
        csound->AuxAlloc(csound, size, &m->aux);
    if (UNLIKELY(m->aux.auxp == NULL))
        return INITERROR("memory allocation error");

    m->proc_mat = (MYFLT *)m->aux.auxp;
    m->mod_map = (int32_t *)(m->proc_mat + m->nummod*m->numparm);
    m->parm_map = m->mod_map + m->nummod;
    m->remap_mod = (MYFLT *)(m->parm_map + m->numparm);
    m->remap_parm = m->remap_mod + m->nummod;

    m->scanned = 0;
    m->doscan = 1;
    return OK;
}

static void scan_modulation_matrix(CSOUND *csound, MODMATRIX *m)
{
    IGN(csound);
    int32_t i, j, k;
    MYFLT *matval;
    /* Use the still unused process matrix for this temporary array */
    int32_t *coltab = (int32_t *)m->proc_mat;

    memset(coltab, 0, m->numparm*sizeof(int32_t));
    m->nummod_scanned = m->numparm_scanned = 0;

    /* Scan for rows containing only zero */
    k = 0;
    for (i = 0; i < m->nummod; ++i) {
        MYFLT *cur = &m->mattab->ftable[m->numparm*i];

        for (j = 0; j < m->numparm; ++j) {
            if (*cur++ != FL(0.0)) {
                m->mod_map[k++] = i;
                ++m->nummod_scanned;
                coltab[j] = 1; /* Mark column as non-zero */
                break;
            }
        }
    }

    k = 0;
    /* Scan for columns containing only zero */
    for (i = 0; i < m->numparm; ++i) {
        MYFLT *cur = &m->mattab->ftable[i];
        int32_t nonzero = coltab[i];

        if (!nonzero) {
            /* Columns is not previously marked as being non-zero, scan it */
            for (j = 0; j < m->nummod; ++j) {
                if (*cur != FL(0.0)) {
                    nonzero = 1;
                    break;
                }
                cur += m->numparm;
            }
        }
        if (nonzero) {
            m->parm_map[k++] = i;
            ++m->numparm_scanned;
        }
    }

    /* TODO Possibly check numparm_scanned and nummod_scanned here to see if it
       even makes sense to process the matrix, set m->scanned accordingly */
    /* Rebuild matrix without zero rows and columns */
    matval = m->proc_mat;
    for (i = 0; i < m->nummod_scanned; ++i) {
        int32_t mod = m->mod_map[i];
        MYFLT *row = &m->mattab->ftable[mod*m->numparm];

        for (j = 0; j < m->numparm_scanned; ++j) {
            int32_t parm = m->parm_map[j];
            *matval++ = row[parm];
        }
    }

    m->scanned = 1;
    m->doscan = 0;
}

static void process(CSOUND *csound, MODMATRIX *m)
{
    IGN(csound);
    int32_t col = 0, row;

    MYFLT *src = &m->modtab->ftable[0];
    /* Use unrolled SSE based loops if possible. All loading and storing has to
       be unaligned since Csound has no alignment guarantees on anything, to the
       best of my knowledge */
#if defined(__SSE__) && !defined(USE_DOUBLE)
    for (; col < (m->numparm & ~7); col += 8) {
        __m128 acc1 = _mm_setzero_ps();
        __m128 acc2 = _mm_setzero_ps();
        float *curmod = &m->mattab->ftable[col];

        for (row = 0; row < m->nummod; ++row) {
            __m128 srcval = _mm_load1_ps(&src[row]);
            __m128 modcoef1 = _mm_loadu_ps(curmod);
            __m128 modcoef2 = _mm_loadu_ps(curmod + 4);
            acc1 = _mm_add_ps(acc1, _mm_mul_ps(srcval, modcoef1));
            acc2 = _mm_add_ps(acc2, _mm_mul_ps(srcval, modcoef2));
            curmod += m->numparm;
        }
        __m128 params1 = _mm_loadu_ps(&m->parmtab->ftable[col]);
        __m128 params2 = _mm_loadu_ps(&m->parmtab->ftable[col + 4]);
        _mm_storeu_ps(&m->restab->ftable[col], _mm_add_ps(params1, acc1));
        _mm_storeu_ps(&m->restab->ftable[col + 4], _mm_add_ps(params2, acc2));
    }
#elif defined(__SSE2__) && defined(USE_DOUBLE)
    for (; col < (m->numparm & ~3); col += 4) {
        __m128d acc1 = _mm_setzero_pd();
        __m128d acc2 = _mm_setzero_pd();

        double *curmod = &m->mattab->ftable[col];

        for (row = 0; row < m->nummod; ++row) {
            __m128d srcval = _mm_load1_pd(&src[row]);
            __m128d modcoef1 = _mm_loadu_pd(curmod);
            __m128d modcoef2 = _mm_loadu_pd(curmod + 2);

            acc1 = _mm_add_pd(acc1, _mm_mul_pd(srcval, modcoef1));
            acc2 = _mm_add_pd(acc2, _mm_mul_pd(srcval, modcoef2));
            curmod += m->numparm;
        }
        __m128d params1 = _mm_loadu_pd(&m->parmtab->ftable[col]);
        __m128d params2 = _mm_loadu_pd(&m->parmtab->ftable[col + 2]);
        _mm_storeu_pd(&m->restab->ftable[col], _mm_add_pd(params1, acc1));
        _mm_storeu_pd(&m->restab->ftable[col + 2], _mm_add_pd(params2, acc2));
    }
#endif
    /* This piece of code will either handle the entire matrix in case neither
       of the above got compiled, or handle the last columns of a matrix with
       width not divisible by four */
    for (; col < m->numparm; ++col) {
        MYFLT acc = FL(0.0);
        MYFLT *curmod = &m->mattab->ftable[col];

        for (row = 0; row < m->nummod; ++row) {
            acc += (*curmod)*src[row];
            curmod += m->numparm;
        }
        m->restab->ftable[col] = m->parmtab->ftable[col] + acc;
    }
}

static void process_scanned(CSOUND *csound, MODMATRIX *m)
{
    IGN(csound);
    int32_t col = 0, row;
    int32_t i;
    MYFLT *src = &m->remap_mod[0];

    for (i = 0; i < m->nummod_scanned; ++i)
        m->remap_mod[i] = m->modtab->ftable[m->mod_map[i]];
    for (i = 0; i < m->numparm_scanned; ++i)
        m->remap_parm[i] = m->parmtab->ftable[m->parm_map[i]];
    memcpy(m->restab->ftable, m->parmtab->ftable, m->numparm*sizeof(MYFLT));

    for (; col < m->numparm_scanned; ++col) {
        MYFLT acc = FL(0.0);
        MYFLT *curmod = &m->proc_mat[col];

        for (row = 0; row < m->nummod_scanned; ++row) {
            acc += (*curmod)*src[row];
            curmod += m->numparm_scanned;
        }
        m->restab->ftable[m->parm_map[col]] += acc;
    }
}

static int32_t
modmatrix(CSOUND *csound, MODMATRIX *m)
{
    /* We wait until the update signal has gone low again before actually
       preprocessing a matrix */
    if (*m->kupdate > FL(0.0) && !m->doscan) {
        m->doscan = 1;
        m->scanned = 0;
    } else if (*m->kupdate == FL(0.0) && m->doscan) {
        scan_modulation_matrix(csound, m);
    }
    if (!m->scanned)
        process(csound, m);
    else
        process_scanned(csound, m);
    return OK;
}

static OENTRY modmatrix_localops[] = {
    {
      "modmatrix", sizeof(MODMATRIX), TB, 3,
      "",
      "iiiiiik",
      (SUBR)modmatrix_init,
      (SUBR)modmatrix,
      (SUBR)NULL
    }
};

LINKAGE_BUILTIN(modmatrix_localops)